Skip to main content

Deep Learning-Based Recommender Systems—A Systematic Review and Future Perspective

  • Conference paper
  • First Online:
Intelligent Data Engineering and Analytics (FICTA 2023)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 371))

  • 166 Accesses

Abstract

With the ever-increasing volume of online information, recommender systems (RS) have been an effective technique to overcome such information overload. Given its widespread implementation in a variety of web applications, the value of RS cannot be emphasized enough. RS has the potential to improve numerous issues identified with over-choice. Deep learning's influence is also widespread, with new evidence of its efficacy in information retrieval and RS research. In RS, the field of deep learning is emerging. This article presents a thorough evaluation of recent research findings on traditional RS and deep learning-based recommender systems (DLRS). This review covers articles published between 2018 and 2022 in four major research databases: Science Direct, IEEE Explore, Springer, and Wiley. First, we provide a complete overview, comparison, and summary of traditional RS. We then systematically analyze DLRS challenges and related solution approaches. Finally, under the discussion of open issues at DLRS, we highlight possible research directions in this area. In this review, we report quantitative data from previous studies to highlight comparisons based on metrics such as F1-score accuracy, recall, accuracy, and error functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, X., Liu, H., Chen, X., Zhong, J., Wang, D.: A novel hybrid deep recommendation system to differentiate user’s preference and item’s attractiveness. Inf. Sci. 519, 306–316 (2020)

    Article  Google Scholar 

  2. Shahbazi, Z., Hazra, D., Park, S., Byun, Y.C.: Toward improving the prediction accuracy of product recommendation system using extreme gradient boosting and encoding approaches. Symmetry 12(9), 1566 (2020)

    Article  Google Scholar 

  3. Lin, H., Huang, Y., Luo, Y.: The construction of learning resource recommendation system based on recognition technology. In: Smart Innovations in Communication and Computational Sciences, pp. 255–261. Springer, Singapore (2021)

    Chapter  Google Scholar 

  4. Sreepada, R.S., Patra, B.K.: Enhancing long tail item recommendation in collaborative filtering: an econophysics-inspired approach. Electron. Commer. Res. Appl. 49 (2021), Article No. 101089

    Google Scholar 

  5. Chiu, M.C., Chen, T.C.T.: Assessing sustainable effectiveness of the adjustment mechanism of a ubiquitous clinic recommendation system. Health Care Manag. Sci. 23(2), 239–248 (2020)

    Article  Google Scholar 

  6. Vithya, M., Sangaiah, S.: Recommendation system based on optimal feature selection algorithm for predictive analysis. In: Emerging Research in Data Engineering Systems and Computer Communications, pp. 105–119. Springer, Singapore (2020)

    Chapter  Google Scholar 

  7. Zhang, Z., Zhang, Y., Ren, Y.: Employing neighborhood reduction for alleviating sparsity and cold start problems in user-based collaborative filtering. Inf. Retrieval J. 23(4), 449–472 (2020)

    Article  Google Scholar 

  8. Zhao, J., Wang, H., Zhang, H.: A regression-based collaborative filtering recommendation approach to time-stepping multi-solver co-simulation. IEEE Access 7, 22790–22806 (2019)

    Article  Google Scholar 

  9. Wang, W., Chen, J., Wang, J., Chen, J., Liu, J., Gong, Z.: Trust-enhanced collaborative filtering for personalized point of interests recommendation. IEEE Trans. Ind. Inf. 16(9), 6124–6132 (2019)

    Article  Google Scholar 

  10. Luo, F., Ranzi, G., Kong, W., Liang, G., Dong, Z.Y.: Personalized residential energy usage recommendation system based on load monitoring and collaborative filtering. IEEE Trans. Ind. Inf. 17(2), 1253–1262 (2020)

    Article  Google Scholar 

  11. Cui, Z., Xu, X., Fei, X.U.E., Cai, X., Cao, Y., Zhang, W., Chen, J.: Personalized recommendation system based on collaborative filtering for IoT scenarios. IEEE Trans. Serv. Comput. 13(4), 685–695 (2020)

    Article  Google Scholar 

  12. Li, Y., Wang, S., Pan, Q., Peng, H., Yang, T., Cambria, E.: Learning binary codes with neural collaborative filtering for efficient recommendation systems. Knowl.-Based Syst. 172, 64–75 (2019)

    Article  Google Scholar 

  13. Natarajan, S., Vairavasundaram, S., Natarajan, S., Gandomi, A.H.: Resolving data sparsity and cold start problem in collaborative filtering recommender system using linked open data. Expert Syst. Appl. 149 (2020), Article No. 113248

    Google Scholar 

  14. Feng, C., Liang, J., Song, P., Wang, Z.: A fusion collaborative filtering method for sparse data in recommender systems. Inf. Sci. 521, 365–379 (2020)

    Article  MathSciNet  Google Scholar 

  15. Pujahari, A., Sisodia, D.S. : Pair-wise preference relation based probabilistic matrix factorization for collaborative filtering in recommender system. Knowl. Based Syst. 196 (2020), Article No.105798

    Google Scholar 

  16. Sun, Z., Zhang, J., Sun, H., Zhu, X.: Collaborative filtering based recommendation of sampling methods for software defect prediction. Appl. Soft Comput. 90(6), Article No.106163 (2020)

    Google Scholar 

  17. Wang, C., Guo, Z., Li, G., Li, J., Pan, P., Liu, K.: A light heterogeneous graph collaborative filtering model using textual information. Knowl. Based Syst. 234 (2021), Article No.107602

    Google Scholar 

  18. Fu, Y., Yu, Q., Quek, T.Q., Wen, W.: Revenue maximization for content-oriented wireless caching networks (CWCNs) with repair and recommendation considerations. IEEE Trans. Wireless Commun. 20(1), 284–298 (2020)

    Article  Google Scholar 

  19. Wang, D., Liang, Y., Xu, D., Feng, X., Guan, R.: A content-based recommender system for computer science publications. Knowl. Based Syst. 157, 1–9 (2018)

    Article  Google Scholar 

  20. Ravi, L., Subramaniyaswamy, V., Vijayakumar, V., Chen, S., Karmel, A., Devarajan, M.: Hybrid location-based recommender system for mobility and travel planning. Mob. Netw. Appl. 24(4), 1226–1239 (2019)

    Article  Google Scholar 

  21. Qian, Y., Zhang, Y., Ma, X., Yu, H., Peng, L.: EARS: emotion-aware recommender system based on hybrid information fusion. Inf. Fusion 46, 141–146 (2019)

    Article  Google Scholar 

  22. Liu, J., Wu, C., Wang, J.: Gated recurrent units based neural network for time heterogeneous feedback recommendation. Inf. Sci. 423, 50–65 (2018)

    Article  Google Scholar 

  23. Cui, Q., Wu, S., Liu, Q., Zhong, W., Wang, L.: MV-RNN: A multi-view recurrent neural network for sequential recommendation. IEEE Trans. Knowl. Data Eng. 32(2), 317–331 (2018)

    Article  Google Scholar 

  24. Xu, Y., Yang, Y., Han, J., Wang, E., Ming, J., Xiong, H.: Slanderous user detection with modified recurrent neural networks in recommender system. Inf. Sci. 505, 265–281 (2019)

    Article  MathSciNet  Google Scholar 

  25. Tian, Y., Peng, S., Zhang, X., Rodemann, T., Tan, K.C., Jin, Y.: A recommender system for metaheuristic algorithms for continuous optimization based on deep recurrent neural networks. IEEE Trans. Artif. Intell. 1(1), 5–18 (2020)

    Article  Google Scholar 

  26. Wang, Y., Guo, C., Chu, Y., Hwang, J.N., Feng, C.: A cross-domain hierarchical recurrent model for personalized session-based recommendations. Neurocomputing 380, 271–284 (2020)

    Article  Google Scholar 

  27. Chen, H., Fu, J., Zhang, L., Wang, S., Lin, K., Shi, L., Wang, L.: Deformable convolutional matrix factorization for document context-aware recommendation in social networks. IEEE Access 7, 66347–66357 (2019)

    Article  Google Scholar 

  28. Shu, J., Shen, X., Liu, H., Yi, B., Zhang, Z.: A content-based recommendation algorithm for learning resources. Multimedia Syst. 24(2), 163–173 (2018)

    Article  Google Scholar 

  29. Zhang, C., Wang, C.: Probabilistic matrix factorization recommendation of self-attention mechanism convolutional neural networks with item auxiliary information. IEEE Access 8, 208311–208321 (2020)

    Article  Google Scholar 

  30. Da’u, A., Salim, N., Idris, R.: An adaptive deep learning method for item recommendation system. Knowl.-Based Syst. 213(8) (2021). Article No.106681

    Google Scholar 

  31. Zaidi, S.F.A., Awan, F.M., Lee, M., Woo, H., Lee, C.G.: Applying convolutional neural networks with different word representation techniques to recommend bug fixers. IEEE Access 8, 213729–213747 (2020)

    Article  Google Scholar 

  32. Gong, J., Zhao, Y., Chen, S., Wang, H., Du, L., Wang, S., Du, B.: Hybrid deep neural networks for friend recommendations in edge computing environment. IEEE Access 8, 10693–10706 (2019)

    Article  Google Scholar 

  33. Libo, Z., Tiejian, L., Fei, Z.: A recommendation model based on deep neural network. IEEE Access 6, 9454–9463 (2018)

    Article  Google Scholar 

  34. Ma, Y., Geng, X., Wang, J.: A deep neural network with multiplex interactions for cold-start service recommendation. IEEE Trans. Eng. Manage. 68(1), 105–119 (2020)

    Article  Google Scholar 

  35. Zhang, Q., Liao, W., Zhang, G., Yuan, B., Lu, J.: A Deep Dual Adversarial network for Cross-domain recommendation. IEEE Trans. Knowl. Data Eng. 1–1 (2021)

    Google Scholar 

  36. Liu, F., Tang, R., Li, X., Zhang, W., Ye, Y., Chen, H., & He, X., 2020. “State representation modeling for deep reinforcement learning based recommendation”. Knowledge-Based Systems, 205, Article No.106170.

    Google Scholar 

  37. Chen, X., Yao, L., McAuley, J., Zhou, G., Wang, X.: A survey of deep reinforcement learning in recommender systems: a systematic review and future directions (2021). arXiv preprint arXiv:2109.03540

  38. Mulani, J., Heda, S., Tumdi, K., Patel, J., Chhinkaniwala, H., Patel, J.: Deep reinforcement learning based personalized health recommendations. In: Deep Learning Techniques for Biomedical and Health Informatics, pp. 231–255. Springer, Cham (2020)

    Chapter  Google Scholar 

  39. Chang, J.W., Chiou, C.Y., Liao, J.Y., Hung, Y.K., Huang, C.C., Lin, K.C., Pu, Y.H.: Music recommender using deep embedding-based features and behavior-based reinforcement learning. Multimedia Tools Appl. 80(26), 34037–34064 (2021)

    Article  Google Scholar 

  40. Fu, M., Agrawal, A., Irissappane, A.A., Zhang, J., Huang, L., Qu, H.: Deep reinforcement learning framework for category-based item recommendation. IEEE Trans. Cybern. 1–14 (2021)

    Google Scholar 

  41. Pujahari, A., Sisodia, D.S.: Modeling side information in preference relation based restricted boltzmann machine for recommender systems. Inf. Sci. 490, 126–145 (2019)

    Article  Google Scholar 

  42. Hazrati, N., Elahi, M.: Addressing the New Item problem in video recommender systems by incorporation of visual features with restricted Boltzmann machines. Expert Syst. 38(6) (2021). Article No. 12645

    Google Scholar 

  43. Chen, Z., Ma, W., Dai, W., Pan, W., Ming, Z.: Conditional restricted Boltzmann machine for item recommendation. Neurocomputing 385, 269–277 (2020)

    Article  Google Scholar 

  44. Zhang, Y., Yin, C., Wu, Q., He, Q., Zhu, H.: Location-aware deep collaborative filtering for service recommendation. IEEE Trans. Syst. Man Cybern. Syst. 6, 3796–3807 (2021)

    Google Scholar 

  45. Wu, L., Member, Sun, P., Hong, R., Ge, Y., Wang, M.: Collaborative neural social recommendation. IEEE Trans. Syst. Man Cybern. Syst. 51(1) 464–476 (2021)

    Google Scholar 

  46. Liang, H.: DRprofiling: deep reinforcement user profiling for recommendations in heterogenous information networks. IEEE Trans. Knowl. Data Eng. 34(4), 1723–1734 (2022)

    Google Scholar 

  47. Li, Z., Chen, H., Ni, Z., Deng, X., Liu, B., Liu, W.: ARPCNN: auxiliary review based personalized attentional CNN for trustworthy recommendation. IEEE Trans. Ind. Inf. 1, 1–11 (2022)

    Google Scholar 

  48. Lei, Y., Wang, Z., Li, W., Pei, H., Dai, Q.: Social attentive deep Q-networks for recommender systems. IEEE Trans. Knowl. Data Eng. 34(4), 2443–2457

    Google Scholar 

  49. Du, Z., Tang, J., Ding, Y.: POLAR++: active one-shot personalized article recommendation. IEEE Trans. Knowl. Data Eng. 33(6):2709–2722 (2019)

    Google Scholar 

  50. Hung, H., Luo, S., Tian, X., Yang, S., Zhang, X.: Neural explicit factor model based on item features for recommendation systems. IEEE Access 9, 58448–58454 (2021)

    Article  Google Scholar 

  51. Zheng, X., Ni, Z., Zhong, X., Luo, Y.: Kernelized deep learning for matrix factorization recommendation system using explicit and implicit information. IEEE Trans. Neural Netw. Learn. Syst. 1, 1–12 (2022)

    Google Scholar 

  52. Feng, X., Liu, Z., Wu, W., Zuo, W.: Social recommendation via deep neural network-based multi-task learning. Expert Syst. Appl. 206 (2022), Article No. 117755

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Krishnamoorthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krishnamoorthi, S., Shyam, G.K. (2023). Deep Learning-Based Recommender Systems—A Systematic Review and Future Perspective. In: Bhateja, V., Carroll, F., Tavares, J.M.R.S., Sengar, S.S., Peer, P. (eds) Intelligent Data Engineering and Analytics. FICTA 2023. Smart Innovation, Systems and Technologies, vol 371. Springer, Singapore. https://doi.org/10.1007/978-981-99-6706-3_33

Download citation

Publish with us

Policies and ethics