Skip to main content

Phonocardiographic Signal Analysis for the Detection of Cardiovascular Diseases

  • Conference paper
  • First Online:
Intelligent Data Engineering and Analytics (FICTA 2023)

Abstract

Under this work, we propose a novel method for analyzing heart sounds to find cardiovascular illnesses. The phonocardiography (PCG) signal is divided into four pieces by the heart sound segmentation process: S1, systolic interval, S2, and diastolic interval. One may argue that it is an essential stage in the automated analysis of PCG signals. Mechanical activity of the circulatory system is conveyed via heart sounds. This data comprises the subject’s precise physiological condition as well as any short-term variations connected to the respiratory cycle. This paper’s focus is on an issue that is currently open: how to analyze noises and extract physiological state changes while keeping short-term variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mangione, S., Nieman, L.Z.: Cardiac auscultatory skills of internal medicine and family practice trainees, a comparison of diagnostic proficiency. JAMA 278(9), 717–722 (1997)

    Article  Google Scholar 

  2. Kumar, R., Anand, R., Kaushik, G.: Image compression using wavelet method and SPIHT algorithm. Digital Image Process. 3(2), 75–79 (2011)

    Google Scholar 

  3. Vyas, G., Anand, R., Hole, K.E.: Implementation of advanced image compression using wavelet transform and SPHIT algorithm. Int. J. Electron. Electric. Eng. 4(3), 249–254 (2011)

    Google Scholar 

  4. Olmez, T., Dokur, Z.: Classification of heart sound using an artificial neural network. Pattern Recogn. Lett. 24, 617–629 (2003)

    Article  MATH  Google Scholar 

  5. Leung, T.S., White, P.R., Collis, W.B., Brown, E., Salmon, A.P.: Classification of heart sounds using time-frequency method and artificial neural networks. In: Proceedings of the 22nd Annual International Conference, Engineering in Medicine and Biology Society (Chicago, IL), pp 988–991 (2020)

    Google Scholar 

  6. Hebden, J.E., Torry, J.N.: Identification of aortic stenosis and mitral regurgitation by heart sound analysis. Comput. Cardiol. 24, 109–112 (1997)

    Google Scholar 

  7. Myint, W. W., Dillard, B.: An electronic stethoscope with diagnosis capability. In: Proceedings of the 33rd Southeastern Symposium on System Theory, pp. 133–137 (2001)

    Google Scholar 

  8. Sindhwani, N., Anand, R., Meivel, S., Shukla, R., Yadav, M.P., Yadav, V.: Performance analysis of deep neural networks using computer vision. EAI Endorsed Trans. Indus. Netw. Intell. Syst. 8(29), e3–e3 (2021)

    Google Scholar 

  9. Juneja, S., Anand, R.: Contrast enhancement of an image by DWT-SVD and DCT-SVD. In: Data Engineering and Intelligent Computing: Proceedings of IC3T 2016, pp. 595–603. Springer, Singapore (2018)

    Google Scholar 

  10. Saini, P., Anand, M.R.: Identification of defects in plastic gears using image processing and computer vision: a review. Int. J. Eng. Res. 3(2), 94–99 (2014)

    Article  Google Scholar 

  11. Sharma, S., Rattan, R., Goyal, B., Dogra, A., Anand, R.: Microscopic and ultrasonic super-resolution for accurate diagnosis and treatment planning. In: Communication, software, and networks: proceedings of INDIA 2022, pp. 601–611. Singapore: Springer Nature Singapore (2022)

    Google Scholar 

  12. Mason, D.: Listening to the heart. F. A. Davis Co. (2000)

    Google Scholar 

  13. Milios, E.E., Nawab, S.H.: Signal abstractions in signal processing software. IEEE Trans. Acoust. Speech Signal Process. 37, 913–928 (1989)

    Article  Google Scholar 

  14. Ruiz, R., Barro, S., Presedo, J., Palacios, F., Vila, J.: Abstraction of information in electrocardiographic monitoring for the detection of myocardial ischaemia. In: V International Symposium on Biomedical Engineering, pp. 291–294 (1994)

    Google Scholar 

  15. McDonnell, J.T.E.: Knowledge-based interpretation of foetalphonocardiographic signals. IEE Proc. Radar Signal Process. 137, 311–318 (1990)

    Article  Google Scholar 

  16. Sharif, Z., Zainal, M.S., Sha’ameri, A.Z., Salleh, S.H.S.: Analysis and classification of heart sounds and murmurs based on the instantaneous energy and frequency estimations. In: Proceedings of the IEEE TENCON, 2, pp. 130–134 (2000)

    Google Scholar 

  17. Liang, H., Lukkarinen, S., Hartimo, I.: Heart sound segmentation algorithm based on heart sound envelogram. Comput. Cardiol. 23, 105–108 (1997)

    Google Scholar 

  18. Griffith, L.: Rapid measurement of digital instantaneous frequency. IEEE Trans. ASSP 23, 207–222 (1975)

    Article  Google Scholar 

  19. Loughlin, P.J., Tacer, B.: Comments on the interpretation of instantaneous frequency. IEEE Signal Process. Lett. 4, 123–125 (1997)

    Article  MATH  Google Scholar 

  20. Yoshida, H., Shino, H., Yana, K.: Instantaneous frequency analysis of systolic murmur for phonocardiogram. In: Proceedings of the 19th International Conference, Engineering in Medicine and Biology Society, vol. 4, pp. 1645–1647, Chicago, IL (1997)

    Google Scholar 

  21. Sun, L., Shen, M., Chan, F.H.Y.: A method for estimating the instantaneous frequency of non-stationary heart sound signals. In: Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, vol. 1, pp. 798–801 (2003)

    Google Scholar 

  22. Dushyant, K., Muskan, G., Gupta, A., Pramanik, S.: Utilizing machine learning and deep learning in cyber security: an innovative approach. In: Ghonge M. M., Pramanik S., Mangrulkar R., Le D. N., (eds.) Cyber security and digital forensics. Wiley, Hoboken (2022). https://doi.org/10.1002/9781119795667.ch12

  23. Bansal, R., Obaid, A.J., Gupta, A., Singh, R., Pramanik, S.: Impact of big data on digital transformation in 5G era. In: 2nd International Conference on Physics and Applied Sciences (ICPAS 2021) (2021). https://doi.org/10.1088/1742-6596/1963/1/012170

  24. Pramanik, S., Bandyopadhyay, S.K., Ghosh, R.: Signature image hiding in color image using steganography and cryptography based on digital signature concepts. In: IEEE 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore, India, pp. 665–669 (2020). https://doi.org/10.1109/ICIMIA48430.2020.9074957

  25. Babu, S.Z.D. et al.: Analysation of big data in smart healthcare. In: Gupta, M., Ghatak, S., Gupta, A., Mukherjee, A.L. (eds.) Artificial Intelligence on Medical Data. Lecture Notes in Computational Vision and Biomechanics, vol. 37. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-0151-5_21

  26. Gupta, A., Singh, R., Nassa, V.K., Bansal, R., Sharma, P., Koti, K.: Investigating application and challenges of big data analytics with clustering. In: 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing, and Automation (ICAECA), 2021, pp. 1–6 (2021). https://doi.org/10.1109/ICAECA52838.2021.9675483

  27. Pandey, B.K., et al.: Effective and secure transmission of health information using advanced morphological component analysis and image hiding. In: Gupta, M., Ghatak, S., Gupta, A., Mukherjee, A.L. (eds.) Artificial Intelligence on Medical Data. Lecture Notes in Computational Vision and Biomechanics, vol. 37. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-0151-5_19

  28. Pathania, V., et al. A database application for monitoring COVID-19 in India. In: Gupta, M., Ghatak, S., Gupta, A., Mukherjee, A.L. (eds.) Artificial Intelligence on Medical Data. Lecture Notes in Computational Vision and Biomechanics, vol. 37. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-0151-5_23

  29. Veeraiah, V., Khan, H., Kumar, A., Ahamad, S., Mahajan, A., Gupta, A.: Integration of PSO and deep learning for trend analysis of meta-verse. In: 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), pp. 713–718 (2022). https://doi.org/10.1109/ICACITE53722.2022.9823883

  30. Gupta, A., Anand, R., Pandey, D., Sindhwani, N., Wairya, S., Pandey, B.K., Sharma, M.: Prediction of breast cancer using extremely randomized clustering forests (ERCF) technique: prediction of breast cancer. Int. J. Distrib. Syst. Technol. (IJDST) 12(4), 1–15 (2021)

    Article  Google Scholar 

  31. Goyal, B., Dogra, A., Khoond, R., Gupta, A., Anand, R.: Infrared and visible image fusion for concealed weapon detection using transform and spatial domain filters. In: 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO), pp. 1–4. IEEE (2021)

    Google Scholar 

  32. Anand, R., Chawla, P.: A novel dual-wideband inscribed hexagonal fractal slotted microstrip antenna for C-and X-band applications. Int. J. RF Microwave Comput. Aided Eng. 30(9), e22277 (2020)

    Article  Google Scholar 

  33. Chawla, P., Anand, R.: Micro-switch design and its optimization using pattern search algorithm for applications in reconfigurable antenna. Modern Antenna Syst. 10, 189–210 (2017)

    Google Scholar 

  34. Anand, R., Chawla, P.: Bandwidth optimization of a novel slotted fractal antenna using modified lightning attachment procedure optimization. In: Smart Antennas: Latest Trends in Design and Application, pp. 379–392. Springer International Publishing, Cham (2022)

    Chapter  Google Scholar 

  35. Raghavan, R., Verma, D.C., Pandey, D., Anand, R., Pandey, B.K., Singh, H.: Optimized building extraction from high-resolution satellite imagery using deep learning. Multimed. Tools Appl. 81(29), 42309–42323 (2022)

    Article  Google Scholar 

  36. Sansanwal, K., Shrivastava, G., Anand, R., Sharma, K.: Big data analysis and compression for indoor air quality. In: Handbook of IoT and Big Data, pp. 1–21. CRC Press (2019)

    Google Scholar 

  37. Weber, B.G., Mateas, M.: A data mining approach to strategy prediction. In: 2009 IEEE Symposium on Computational Intelligence and Games, pp. 140–147. IEEE (2009)

    Google Scholar 

  38. Jain, S., Sindhwani, N., Anand, R., Kannan, R.: COVID detection using chest X-ray and transfer learning. In: Intelligent Systems Design and Applications: 21st International Conference on Intelligent Systems Design and Applications (ISDA 2021) Held During December 13–15, 2021, pp. 933–943. Springer International Publishing, Cham (2022)

    Google Scholar 

  39. Sindhwani, N., Anand, R., Niranjanamurthy, M., Verma, D. C., Valentina, E. B. (eds.): IoT Based Smart Applications. Springer Nature, Berlin (2022)

    Google Scholar 

  40. Sindhwani, N., Anand, R., Vashisth, R., Chauhan, S., Talukdar, V., Dhabliya, D.: Thingspeak-based environmental monitoring system using IoT. In: 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC), pp. 675–680. IEEE (2022)

    Google Scholar 

  41. Saxena, H., Joshi, D., Singh, H., Anand, R.: Comparison of classification algorithms for Alzheimer’s disease prediction. In: 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC), pp. 687–692. IEEE (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Anand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, D.N., Anand, R., Ahamad, S., Patil, T., Dhabliya, D., Gupta, A. (2023). Phonocardiographic Signal Analysis for the Detection of Cardiovascular Diseases. In: Bhateja, V., Carroll, F., Tavares, J.M.R.S., Sengar, S.S., Peer, P. (eds) Intelligent Data Engineering and Analytics. FICTA 2023. Smart Innovation, Systems and Technologies, vol 371. Springer, Singapore. https://doi.org/10.1007/978-981-99-6706-3_47

Download citation

Publish with us

Policies and ethics