Skip to main content

Diverse Policies Converge in Reward-Free Markov Decision Processes

  • Conference paper
  • First Online:
PRICAI 2023: Trends in Artificial Intelligence (PRICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14325))

Included in the following conference series:

  • 513 Accesses

Abstract

Reinforcement learning has achieved great success in many decision-making tasks, and traditional reinforcement learning algorithms are mainly designed for obtaining a single optimal solution. However, recent works show the importance of developing diverse policies, which makes it an emerging research topic. Despite the variety of diversity reinforcement learning algorithms that have emerged, none of them theoretically answer the question of how the algorithm converges and how efficient the algorithm is. In this paper, we provide a unified diversity reinforcement learning framework and investigate the convergence of training diverse policies. Under such a framework, we also propose a provably efficient diversity reinforcement learning algorithm. Finally, we verify the effectiveness of our method through numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res. 3(Nov), 397–422 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2), 235–256 (2002)

    Article  MATH  Google Scholar 

  3. Berner, C., et al.: Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680 (2019)

  4. Chen, W., Huang, S., Chiang, Y., Chen, T., Zhu, J.: DGPO: discovering multiple strategies with diversity-guided policy optimization. In: Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems, pp. 2634–2636 (2023)

    Google Scholar 

  5. Chu, W., Li, L., Reyzin, L., Schapire, R.: Contextual bandits with linear payoff functions. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 208–214. JMLR Workshop and Conference Proceedings (2011)

    Google Scholar 

  6. Ellis, B., et al.: SMACv2: an improved benchmark for cooperative multi-agent reinforcement learning. arXiv preprint arXiv:2212.07489 (2022)

  7. Eysenbach, B., Gupta, A., Ibarz, J., Levine, S.: Diversity is all you need: learning skills without a reward function. In: International Conference on Learning Representations (2018)

    Google Scholar 

  8. Eysenbach, B., Salakhutdinov, R., Levine, S.: The information geometry of unsupervised reinforcement learning. In: International Conference on Learning Representations (2021)

    Google Scholar 

  9. Fu, W., Du, W., Li, J., Chen, S., Zhang, J., Wu, Y.: Iteratively learning novel strategies with diversity measured in state distances. Submitted to ICLR 2023 (2022)

    Google Scholar 

  10. Huang, S., et al.: Tikick: towards playing multi-agent football full games from single-agent demonstrations. arXiv preprint arXiv:2110.04507 (2021)

  11. Huang, S., et al.: VMAPD: generate diverse solutions for multi-agent games with recurrent trajectory discriminators. In: 2022 IEEE Conference on Games (CoG), pp. 9–16. IEEE (2022)

    Google Scholar 

  12. Kumar, S., Kumar, A., Levine, S., Finn, C.: One solution is not all you need: few-shot extrapolation via structured maxent RL. Adv. Neural. Inf. Process. Syst. 33, 8198–8210 (2020)

    Google Scholar 

  13. Lanctot, M., et al.: A unified game-theoretic approach to multiagent reinforcement learning. In: Advances in neural information processing systems, vol. 30 (2017)

    Google Scholar 

  14. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 661–670 (2010)

    Google Scholar 

  15. Liu, X., et al.: Unifying behavioral and response diversity for open-ended learning in zero-sum games. arXiv preprint arXiv:2106.04958 (2021)

  16. Mahajan, A., Rashid, T., Samvelyan, M., Whiteson, S.: Maven: multi-agent variational exploration. arXiv preprint arXiv:1910.07483 (2019)

  17. Makoviychuk, V., et al.: Isaac gym: high performance GPU-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470 (2021)

  18. May, B.C., Korda, N., Lee, A., Leslie, D.S.: Optimistic bayesian sampling in contextual-bandit problems. J. Mach. Learn. Res. 13, 2069–2106 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Osa, T., Tangkaratt, V., Sugiyama, M.: Discovering diverse solutions in deep reinforcement learning by maximizing state-action-based mutual information. Neural Netw. 152, 90–104 (2022)

    Article  Google Scholar 

  20. Shi, J.C., Yu, Y., Da, Q., Chen, S.Y., Zeng, A.X.: Virtual-taobao: virtualizing real-world online retail environment for reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4902–4909 (2019)

    Google Scholar 

  21. Wang, T.T., et al.: Adversarial policies beat professional-level go AIs. arXiv preprint arXiv:2211.00241 (2022)

  22. Watkins, C.J.C.H.: Learning from delayed rewards. Robot. Auton. Syst. (1989)

    Google Scholar 

  23. Xue, W., Cai, Q., Zhan, R., Zheng, D., Jiang, P., An, B.: ResAct: Reinforcing long-term engagement in sequential recommendation with residual actor. arXiv preprint arXiv:2206.02620 (2022)

  24. Yu, C., Yang, X., Gao, J., Yang, H., Wang, Y., Wu, Y.: Learning efficient multi-agent cooperative visual exploration. arXiv preprint arXiv:2110.05734 (2021)

  25. Zahavy, T., O’Donoghue, B., Barreto, A., Flennerhag, S., Mnih, V., Singh, S.: Discovering diverse nearly optimal policies with successor features. In: ICML 2021 Workshop on Unsupervised Reinforcement Learning (2021)

    Google Scholar 

  26. Zhou, Z., Fu, W., Zhang, B., Wu, Y.: Continuously discovering novel strategies via reward-switching policy optimization. In: International Conference on Learning Representations (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanqi Lin or Shiyu Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, F., Huang, S., Tu, WW. (2024). Diverse Policies Converge in Reward-Free Markov Decision Processes. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14325. Springer, Singapore. https://doi.org/10.1007/978-981-99-7019-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7019-3_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7018-6

  • Online ISBN: 978-981-99-7019-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics