Skip to main content

Sparse Reconstruction Method for Flow Fields Based on Mode Decomposition Autoencoder

  • Conference paper
  • First Online:
PRICAI 2023: Trends in Artificial Intelligence (PRICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14325))

Included in the following conference series:

  • 563 Accesses

Abstract

The accurate reconstruction of global flow fields from sparse measurements has been a longstanding challenge in which the quantity and positioning of measurements play a critical role. To address this issue, we propose a global flow field reconstruction method based on a mode decomposition autoencoder, which maintains interpretability while effectively handling arbitrary quantities and positioning of sensors, ensuring high accuracy in the reconstruction of flow fields and other modal data. An autoencoder is trained on global flow fields to capture the nonlinear modes of the flow. The backpropagation capability of the deep network is leveraged to transform the flow field reconstruction problem into an interpretable optimization problem, which is solved to obtain the complete flow field. In experiments carried out on a stable ocean surface temperature dataset and an unstable multi-cylinder airflow dataset, the proposed method consistently achieved high accuracy across various flow fields, surpassing the performance of current approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dong, W., Chen, X., Yang, Q.: Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability. Appl. Energy 308, 118387 (2022)

    Article  Google Scholar 

  2. Erichson, N.B., Mathelin, L., Yao, Z., Brunton, S.L., Mahoney, M.W., Kutz, J.N.: Shallow neural networks for fluid flow reconstruction with limited sensors. Proc. R. Soc. A: Math. Phys. Eng. Sci. 476(2238), 20200097 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Everson, R., Sirovich, L.: Optics InfoBase: Journal of the Optical Society of America A - Karhunen-Loève procedure for Gappy data. JOSA A 12(8), 2–9 (1995)

    Google Scholar 

  4. Fresca, S., Manzoni, A.: POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition. Comput. Methods Appl. Mech. Eng. 388, 114181 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fukami, K., Maulik, R., Ramachandra, N., Fukagata, K., Taira, K.: Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning. Nat. Mach. Intell. 3(11), 945–951 (2021)

    Article  Google Scholar 

  6. Giannopoulos, A., Aider, J.L.: Data-driven order reduction and velocity field reconstruction using neural networks: the case of a turbulent boundary layer. Phys. Fluids 32(9), 095117 (2020)

    Article  Google Scholar 

  7. Hasegawa, K., Fukami, K., Murata, T., Fukagata, K.: CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers. Fluid Dyn. Res. 52(6), 065501 (2020)

    Article  MathSciNet  Google Scholar 

  8. Ishii, M., Shouji, A., Sugimoto, S., Matsumoto, T.: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol. 25(7), 865–879 (2005)

    Article  Google Scholar 

  9. Kazemi, A., Stoddard, M., Amini, A.A.: Reduced-order modeling of 4D flow MRI and CFD in stenotic flow using Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD). In: Medical Imaging 2022: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 12036, pp. 509–519. SPIE, April 2022

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization, January 2017

    Google Scholar 

  11. Lario, A., Maulik, R., Schmidt, O.T., Rozza, G., Mengaldo, G.: Neural-network learning of SPOD latent dynamics. J. Comput. Phys. 468, 111475 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lavrinov, V.V., Lavrinova, L.N.: Reconstruction of wavefront distorted by atmospheric turbulence using a Shack-Hartman sensor. Comput. Opt. 43, 586–595 (2019)

    Article  Google Scholar 

  13. Leinonen, J., Nerini, D., Berne, A.: Stochastic super-resolution for downscaling time-evolving atmospheric fields with a generative adversarial network. IEEE Trans. Geosci. Remote Sens. 59(9), 7211–7223 (2021)

    Article  Google Scholar 

  14. Li, C.Y., Tse, T.K.T., Hu, G.: Dynamic Mode Decomposition on pressure flow field analysis: flow field reconstruction, accuracy, and practical significance. J. Wind Eng. Ind. Aerodyn. 205, 104278 (2020)

    Article  Google Scholar 

  15. Liu, N., et al.: Meshless surface wind speed field reconstruction based on machine learning. Adv. Atmos. Sci. 39(10), 1721–1733 (2022)

    Article  Google Scholar 

  16. Liu, T., Li, Y., Jing, Q., Xie, Y., Zhang, D.: Supervised learning method for the physical field reconstruction in a nanofluid heat transfer problem. Int. J. Heat Mass Transf. 165, 120684 (2021)

    Article  Google Scholar 

  17. Manfren, M., James, P.A., Tronchin, L.: Data-driven building energy modelling - an analysis of the potential for generalisation through interpretable machine learning. Renew. Sustain. Energy Rev. 167, 112686 (2022)

    Article  Google Scholar 

  18. Maulik, R., Egele, R., Lusch, B., Balaprakash, P.: Recurrent neural network architecture search for geophysical emulation. In: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–14, November 2020

    Google Scholar 

  19. Murata, T., Fukami, K., Fukagata, K.: Nonlinear mode decomposition with convolutional neural networks for fluid dynamics. J. Fluid Mech. 882, A13 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pascarella, G., Fossati, M., Barrenechea, G.: Impact of POD modes energy redistribution on flow reconstruction for unsteady flows of impulsively started airfoils and wings. Int. J. Comput. Fluid Dyn. 34(2), 108–118 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, S., Liu, S., Chen, M., Guo, H.: An optimized sensing arrangement in wind field reconstruction using CFD and POD. IEEE Trans. Sustain. Energy 11(4), 2449–2456 (2020)

    Article  Google Scholar 

  22. Wang, W., Wainwright, M.J., Ramchandran, K.: Information-theoretic limits on sparse signal recovery: dense versus sparse measurement matrices. IEEE Trans. Inf. Theory 56(6), 2967–2979 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, Z., Gong, K., Fan, W., Li, C., Qian, W.: Prediction of swirling flow field in combustor based on deep learning. Acta Astronaut. 201, 302–316 (2022)

    Article  Google Scholar 

  24. Yu, J., Hesthaven, J.S.: Flowfield reconstruction method using artificial neural network. AIAA J. 57(2), 482–498 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (No. 2020YFB1709500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, J., Yuan, W., Hu, X., Zhang, J., Chi, X. (2024). Sparse Reconstruction Method for Flow Fields Based on Mode Decomposition Autoencoder. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14325. Springer, Singapore. https://doi.org/10.1007/978-981-99-7019-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7019-3_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7018-6

  • Online ISBN: 978-981-99-7019-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics