Skip to main content

Machine Learning-Driven Reactor Pressure Vessel Embrittlement Prediction Model

  • Conference paper
  • First Online:
PRICAI 2023: Trends in Artificial Intelligence (PRICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14325))

Included in the following conference series:

  • 1026 Accesses

Abstract

The application of machine learning in the nuclear field has been considered for the prediction of neutron irradiation embrittlement of reactor pressure vessel (RPV) steels in recent years. In this study, the RPV irradiation surveillance data are summarized and the integration of physical mechanisms with machine learning is investigated. It is found that the experimental results of the fusion model outperform the single machine learning models or physics formulas. In addition, the data amount of the RPV dataset is enhanced using the variational auto-encoder (VAE) model. Then a combined model of VAE and physical formula guided multilayer perceptron (VPMLP) is proposed, and its advantages in terms of prediction accuracy and generalization ability are experimentally demonstrated.

This work was supported by National Natural Science Foundation of China (No. 12205188), Natural Science Foundation of Shanghai (No. 22ZR1428700), and China National Nuclear Corporation (No. CNNC-LCKY-202236).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brillaud, C., Hedin, F., Houssin, B.: A comparison between French surveillance program results and predictions of irradiation embrittlement. In: Stoller, R.E., Garner, F.A., Henager, C.H., Iagata, N. (eds.) Effects of Radiation on Materials: 13th International Symposium, ASTM STP 956, Philadelphia, PA, pp. 420–447. American Society for Testing and Materials (1987)

    Google Scholar 

  2. Eason, E.D., Odette, G.R., Nanstad, R.K., et al.: A physically-based correlation of irradiation-induced transition temperature shifts for RPV steels. J. Nucl. Mater. 433(1–3), 240–254 (2013)

    Article  Google Scholar 

  3. Ferreño, D., Serrano, M., Kirk, M., et al.: Prediction of the transition-temperature shift using machine learning algorithms and the plotter database. Metals 12(2), 186 (2022)

    Article  Google Scholar 

  4. Jing, K., Kai, S., Xiaoxi, M., et al.: Research on prediction model of irradiation embrittlement of RPV materials based on artificial neural network. Nucl. Power Eng. 41(6), 92–95 (2020)

    Google Scholar 

  5. Kirk, M.: Summary of work to develop the transition temperature shift equation used in ASTM standard guide e900–15. In: International Review of Nuclear Reactor Pressure Vessel Surveillance Programs, West Conshohocken, PA, pp. 432–456. ASTM International (2018)

    Google Scholar 

  6. Kirk, M., Hashimoto, Y., Nomoto, A.: Application of a machine learning approach based on nearest neighbors to extract embrittlement trends from RPV surveillance data. J. Nucl. Mater. 568, 153886 (2022)

    Article  Google Scholar 

  7. Kolluri, M., Martin, O., Naziris, F., et al.: Structural materias research on parameters influencing the material properties of RPV steels for safe long-term operation of PWR NPPs. Nucl. Eng. Des. 406, 112236 (2023)

    Article  Google Scholar 

  8. Liu, Y.C., Wu, H., Mayeshiba, T., et al.: Machine learning predictions of irradiation embrittlement in reactor pressure vessel steels. NPJ Comput. Mater. 8(1), 85 (2022)

    Article  Google Scholar 

  9. Montáns, F.J., Chinesta, F., Gómez-Bombarelli, R., et al.: Data-driven modeling and learning in science and engineering. Comptes Rendus Mécanique 347(11), 845–855 (2019)

    Article  Google Scholar 

  10. Soneda, N., Nomoto, A.: Characteristics of the new embrittlement correlation method for the Japanese reactor pressure vessel steels. J. Eng. Gas Turbines Power 132(10), 102918 (2010)

    Article  Google Scholar 

  11. Wang, H., Villanueva, W., Chen, Y., et al.: Thermo-mechanical behavior of an ablated reactor pressure vessel wall in a nordic BWR under in-vessel core melt retention. Nucl. Eng. Des. 379, 111196 (2021)

    Article  Google Scholar 

  12. Xu, C., Liu, X., Wang, H., et al.: A study of predicting irradiation-induced transition temperature shift for RPV steels with xgboost modeling. Nucl. Eng. Technol. 53(8), 2610–2615 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, P., Chen, L., Chen, H., Kong, L., Li, Z. (2024). Machine Learning-Driven Reactor Pressure Vessel Embrittlement Prediction Model. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14325. Springer, Singapore. https://doi.org/10.1007/978-981-99-7019-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7019-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7018-6

  • Online ISBN: 978-981-99-7019-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics