Skip to main content

KDED: A Knowledge Distillation Based Edge Detector

  • Conference paper
  • First Online:
PRICAI 2023: Trends in Artificial Intelligence (PRICAI 2023)

Abstract

Deep learning-based edge detectors are successful due to the large amount of supervisory information provided by manual labeling. However, there are inevitably errors in the manually labeled supervisory information (MLSI), which greatly mislead the learning of the models and become the bottleneck of deep learning-based edge detectors. To solve the drawbacks of MLSI, we propose a novel Knowledge Distillation based Edge Detector (KDED). By means of knowledge distillation, MLSI is transformed into edge probability map to supervise the learning of the models, which can effectively correct the errors in MLSI and represents disputed edges by probability. Adapting to the new training strategy and solving the sample imbalance problem, the Sample Balance Loss is proposed, which ensures the stability of the model and improve the accuracy. The experimental results indicate that KDED remarkably improves the accuracy without increasing the parameters and the computational cost. KDED achieves an ODS F-measure of 0.832 with 14.8 M parameters on BSDS500 dataset, which is significantly super to the results of previous methods. The source code is available at this link.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)

    Article  Google Scholar 

  2. Bertasius, G., Shi, J., Torresani, L.: Deepedge: a multi-scale bifurcated deep network for top-down contour detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4380–4389 (2015)

    Google Scholar 

  3. Canny, J.: A computational approach to edge detection. In: Fischler, M.A., Firschein, O. (eds.) Readings in Computer Vision, pp. 184–203. Morgan Kaufmann, San Francisco (1987)

    Google Scholar 

  4. Deng, R., Shen, C., Liu, S., Wang, H., Liu, X.: Learning to predict crisp boundaries. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 562–578 (2018)

    Google Scholar 

  5. Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2014)

    Article  Google Scholar 

  6. Gao, L., Zhou, Z., Shen, H.T., Song, J.: Bottom-up and top-down: bidirectional additive net for edge detection. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 594–600 (2021)

    Google Scholar 

  7. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J. Comput. Vision 129, 1789–1819 (2021)

    Article  Google Scholar 

  8. He, J., Zhang, S., Yang, M., Shan, Y., Huang, T.: Bdcn: bi-directional cascade network for perceptual edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 100–113 (2022)

    Article  Google Scholar 

  9. Huan, L., Xue, N., Zheng, X., He, W., Gong, J., Xia, G.S.: Unmixing convolutional features for crisp edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 44(10-Part-1), 6602–6609 (2022)

    Article  Google Scholar 

  10. Li, T., Li, J., Liu, Z., Zhang, C.: Few sample knowledge distillation for efficient network compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14639–14647 (2020)

    Google Scholar 

  11. Li, Y., et al.: Compact twice fusion network for edge detection. arXiv preprint arXiv:2307.04952 (2023)

  12. Liu, Y., et al.: Richer convolutional features for edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 41(08), 1939–1946 (2019)

    Article  Google Scholar 

  13. Liu, Z., Liew, J.H., Chen, X., Feng, J.: Dance: a deep attentive contour model for efficient instance segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 345–354 (2021)

    Google Scholar 

  14. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)

    Article  Google Scholar 

  15. Poma, X.S., Riba, E., Sappa, A.: Dense extreme inception network: towards a robust cnn model for edge detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1923–1932 (2020)

    Google Scholar 

  16. Pu, M., Huang, Y., Liu, Y., Guan, Q., Ling, H.: Edter: edge detection with transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1402–1412 (2022)

    Google Scholar 

  17. Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3982–3991 (2015)

    Google Scholar 

  18. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  20. Su, Z., et al.: Pixel difference networks for efficient edge detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5117–5127 (2021)

    Google Scholar 

  21. Wang, Y., Zhao, X., Li, Y., Huang, K.: Deep crisp boundaries: from boundaries to higher-level tasks. IEEE Trans. Image Process. 28(3), 1285–1298 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  23. Wu, G., Gong, S.: Peer collaborative learning for online knowledge distillation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 10302–10310 (2021)

    Google Scholar 

  24. Xie, S., Tu, Z.: Holistically-nested edge detection. Int. J. Comput. Vision 125(1), 3–18 (2017)

    Article  MathSciNet  Google Scholar 

  25. Xu, D., Ouyang, W., Alameda-Pineda, X., Ricci, E., Wang, X., Sebe, N.: Learning deep structured multi-scale features using attention-gated crfs for contour prediction. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  26. Xuan, W., Huang, S., Liu, J., Du, B.: Fcl-net: towards accurate edge detection via fine-scale corrective learning. Neural Netw. 145, 248–259 (2022)

    Article  Google Scholar 

  27. Yang, J., Price, B., Cohen, S., Lee, H., Yang, M.H.: Object contour detection with a fully convolutional encoder-decoder network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 193–202 (2016)

    Google Scholar 

  28. Zhao, J.X., et al.: Egnet: edge guidance network for salient object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8779–8788 (2019)

    Google Scholar 

  29. Zhu, S., Brazil, G., Liu, X.: The edge of depth: explicit constraints between segmentation and depth. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13116–13125 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National key r&d program under Grant 2019YFF0301800, in part by National Natural Science Foundation of China under Grant 61379106, in part by the Shandong Provincial Natural Science Foundation under Grant ZR2013FM036, and ZR2015FM011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yachuan Li or Zongmin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y. et al. (2024). KDED: A Knowledge Distillation Based Edge Detector. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14327. Springer, Singapore. https://doi.org/10.1007/978-981-99-7025-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7025-4_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7024-7

  • Online ISBN: 978-981-99-7025-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics