Skip to main content

Graph-Guided Latent Variable Target Inference for Mitigating Concept Drift in Time Series Forecasting

  • Conference paper
  • First Online:
PRICAI 2023: Trends in Artificial Intelligence (PRICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14327))

Included in the following conference series:

  • 463 Accesses

Abstract

With the proliferation of the Internet of Things (IoT), there is an abundance of data available to humans. However, the monitoring environments for data collection are becoming increasingly diverse, leading to the occurrence of concept drift in the collected data. Concept drift refers to the phenomenon where the distribution of data changes over time, making it challenging for prediction models trained on historical data to adapt to the changing distribution. Previous research has primarily focused on predicting or compensating for distributions with fixed durations in Euclidean space to mitigate non-stationarity. However, we have observed that concept drift often occurs at different time scales, and detecting them using fixed scales has inherent limitations. Based on this observation, we propose a Graph-Guided Latent Variable Target Inference network that maps current data and variable duration query targets onto a graph neural network in latent space. We apply self-attention transformations to the representations and correlations on the graph in the dimensions of time, features, and query targets. The model updates its parameters based on these non-Euclidean correlation patterns, enabling the graph to evolve towards the direction of the query targets and obtain an evolved latent distribution. Finally, the decoder generates a prediction data stream regarding the query targets based on the evolved latent distribution. The experiments were conducted on five datasets, where our proposed method was compared against the five most advanced baselines. The findings demonstrated a substantial advantage in prediction performance provided by our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, C., Cui, L., Yu, S., James, J.Q.: A communication-efficient federated learning scheme for iot-based traffic forecasting. IEEE Internet Things J. 9(14), 11918–11931 (2021)

    Article  Google Scholar 

  2. Shengdong, M., Zhengxian, X., Yixiang, T.: Intelligent traffic control system based on cloud computing and big data mining. IEEE Trans. Industr. Inf. 15(12), 6583–6592 (2019)

    Article  Google Scholar 

  3. Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multiadversarial spatiotemporal networks. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  4. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–1191 (2020)

    Article  Google Scholar 

  5. Agrahari, S., Singh, A.K.: Concept drift detection in data stream mining: a literature review. J. King Saud Univ.-Comput. Inf. Sci. 34(10), 9523–9540 (2022)

    Google Scholar 

  6. Casado, F.E., Lema, D., Criado, M.F., Iglesias, R., Regueiro, C.V., Barro, S.: Concept drift detection and adaptation for federated and continual learning. Multimedia Tools Appl. 1–23 (2022)

    Google Scholar 

  7. Zenisek, J., Holzinger, F., Affenzeller, M.: Machine learning based concept drift detection for predictive maintenance. Comput. Ind. Eng. 137, 106031 (2019)

    Article  Google Scholar 

  8. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2018)

    Google Scholar 

  9. Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., Iosifidis, A.: Deep adaptive input normalization for time series forecasting. IEEE Trans. Neural Networks Learn. Syst. 31(9), 3760–3765 (2019)

    Article  Google Scholar 

  10. Kim, T., Kim, J., Tae, Y., Park, C., Choi, J.H., Choo, J.: Reversible instance normalization for accurate time-series forecasting against distribution shift. In: International Conference on Learning Representations (2021)

    Google Scholar 

  11. Abu-Rayash, A., Dincer, I.: Analysis of the electricity demand trends amidst the COVID-19 coronavirus pandemic. Energy Res. Soc. Sci. 68, 101682 (2020)

    Article  Google Scholar 

  12. Ren, S., Liao, B., Zhu, W., Li, K.: Knowledgemaximized ensemble algorithm for different types of concept drift. Inf. Sci. 430, 261–281 (2018)

    Article  Google Scholar 

  13. Žliobaitė, I., Pechenizkiy, M., Gama, J.: An ˙overview of concept drift applications. In: Japkowicz, N., Stefanowski, J. (eds.) Big Data Analysis: New Algorithms for a New Society. Studies in Big Data, vol. 16, pp. 91–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26989-4_4

  14. Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., Ghedira, K.: Discussion and review on evolving data streams and concept drift adapting. Evol. Syst. 9(1), 1–23 (2018)

    Article  Google Scholar 

  15. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Wortman Vaughan, J.: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016)

    MathSciNet  Google Scholar 

  17. Hoffman, J., Darrell, T., Saenko, K.: Continuous manifold based adaptation for evolving visual domains. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 867–874 (2014)

    Google Scholar 

  18. Mancini, M., Rota Bulo, S., Caputo, B., Ricci, E.: AdaGraph: unifying predictive and continuous domain adaptation through graphs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6568–6577 (2019)

    Google Scholar 

  19. Wang, H., He, H., Katabi, D.: Continuously indexed domain adaptation. In: International Conference on Machine Learning, pp. 9898–9907 (2020)

    Google Scholar 

  20. Du, Y., et al.: AdaRNN: adaptive learning and forecasting of time series. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 402–411 (2021)

    Google Scholar 

  21. Kim, T., Kim, J., Tae, Y., Park, C., Choi, J.-H., Choo, J.: Reversible instance normalization for accurate timeseries forecasting against distribution shift. In: International Conference on Learning Representations (2022)

    Google Scholar 

  22. Dhaka, A.K., Catalina, A., Welandawe, M., Andersen, M.R., Huggins, J., Vehtari, A.: Challenges and opportunities in high dimensional variational inference. Adv. Neural. Inf. Process. Syst. 34, 7787–7798 (2021)

    Google Scholar 

  23. Chen, J., Zhu, J., Teh, Y.W., Zhang, T.: Stochastic expectation maximization with variance reduction. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  24. Zorich, V.A., Paniagua, O.: Mathematical Analysis II, vol. 220. Springer, Heidelberg (2016)

    Book  Google Scholar 

  25. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. stat 1050(20), 10–48550 (2017)

    Google Scholar 

  26. Ertugrul, F.O.: Forecasting electricity load by a novel recurrent extreme learning machines approach. Int. J. Electr. Power Energy Syst. 78, 429–435 (2016)

    Google Scholar 

  27. Abdulaal, A., Liu, Z., Lancewicki, T.: Practical approach to asynchronous multivariate time series anomaly detection and localization. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2485–2494 (2021)

    Google Scholar 

  28. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2828–2837 (2019)

    Google Scholar 

  29. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018)

    Google Scholar 

  30. Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Adv. Neural. Inf. Process. Syst. 33, 13016–13026 (2020)

    Google Scholar 

  31. Sun, Y., Pfahringer, B., Gomes, H.M., Bifet, A.: SOKNL: a novel way of integrating K-nearest neighbours with adaptive random forest regression for data streams. Data Min. Knowl. Disc. 36(5), 2006–2032 (2022)

    Article  MathSciNet  Google Scholar 

  32. Zhao, P., Cai, L.-W., Zhou, Z.-H.: Handling concept drift via model reuse. Mach. Learn. 109(3), 533–568 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rubanova, Y., Chen, R.T.Q., Duvenaud, D.K.: Latent ordinary differential equations for irregularly-sampled time series. In: Advances in Neural Information Processing Systems, vol. 32, pp. 5320–5330. Curran Associates, Inc. (2019)

    Google Scholar 

  34. Zhou, H., et al.: Informer: Beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35(12), pp. 11106–11115 (2021)

    Google Scholar 

  35. Wu, H., Xu, J., Wang, J., Long, M.: AutoFormer: decomposition transformers with auto-correlation for long-term series forecasting. Adv. Neural. Inf. Process. Syst. 34, 22419–22430 (2021)

    Google Scholar 

  36. Kenton, J.D.M.W.C., Toutanova, L.K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, vol. 1, p. 2 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shijun Li or Wei Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, F., Li, S., Yu, W. (2024). Graph-Guided Latent Variable Target Inference for Mitigating Concept Drift in Time Series Forecasting. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14327. Springer, Singapore. https://doi.org/10.1007/978-981-99-7025-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7025-4_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7024-7

  • Online ISBN: 978-981-99-7025-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics