Abstract
Despite large-scale deployment in industry and daily life scenarios, the black-box nature of Connectionism-based deep neural networks is still criticized. Counterfactual explanation can shed light on the inner mechanism of arbitrary deep-learning model, thus being a preferable local interpretation method. There are a variety of methods for counterfactual generation, however, exist two defects: (1) Disunity. There is no agreement on model architecture and optimization methods of counterfactual generation. (2) Neglect of desiderata. There exist several desiderata for a good counterfactual sample, but most existing works only include a few of them. To address the above problem, we propose UNICE, a unified framework for counterfactual generations. UNICE models the counterfactual generation as a multi-task optimization problem on a dense data manifold learn by auto-encoder. Besides, UNICE addresses counterfactual desiderata to the best of our knowledge. What’s more, one can custom UNICE components regarding specific tasks and data modalities. An UNICE implementation for tabular data is provided and surpasses state-of-the-art methods in five of six metrics, indicating the effectiveness of our proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
AlliedToasters: Dfencoder - autoencoders for dataframes (2022). https://github.com/AlliedToasters/dfencoder
Cartwright, N.: Counterfactuals in economics: a commentary (2003)
Chudik, A., Mohaddes, K., Pesaran, M.H., Raissi, M., Rebucci, A.: A counterfactual economic analysis of COVID-19 using a threshold augmented multi-country model. J. Int. Money Financ. 119, 102477 (2021). https://doi.org/10.1016/j.jimonfin.2021.102477. https://www.sciencedirect.com/science/article/pii/S0261560621001285
Dubey, P.: On the uniqueness of the shapley value. Internat. J. Game Theory 4(3), 131–139 (1975)
Duong, T.D., Li, Q., Xu, G.: Prototype-based counterfactual explanation for causal classification. arXiv preprint arXiv:2105.00703 (2021)
Grath, R.M., et al.: Interpretable credit application predictions with counterfactual explanations. ArXiv abs/1811.05245 (2018). https://api.semanticscholar.org/CorpusID:53293518
Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti, F.: Local rule-based explanations of black box decision systems. ArXiv abs/1805.10820 (2018). https://api.semanticscholar.org/CorpusID:44063479
Hoofnagle, C.J., van der Sloot, B., Borgesius, F.Z.: The European union general data protection regulation: what it is and what it means. Inf. Commun. Technol. Law 28(1), 65–98 (2019)
Karimi, A.H., Barthe, G., Balle, B., Valera, I.: Model-agnostic counterfactual explanations for consequential decisions. ArXiv abs/1905.11190 (2019). https://api.semanticscholar.org/CorpusID:166227893
Karimi, A.H., Barthe, G., Balle, B., Valera, I.: Model-agnostic counterfactual explanations for consequential decisions. In: International Conference on Artificial Intelligence and Statistics, pp. 895–905. PMLR (2020)
Laugel, T., Lesot, M.J., Marsala, C., Renard, X., Detyniecki, M.: Inverse classification for comparison-based interpretability in machine learning. arXiv preprint arXiv:1712.08443 (2017)
Le, T., Wang, S., Lee, D.: Grace: generating concise and informative contrastive sample to explain neural network model’s prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020, pp. 238–248. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3394486.3403066
Van Looveren, A., Klaise, J.: Interpretable counterfactual explanations guided by prototypes. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12976, pp. 650–665. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86520-7_40
Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)
Moraffah, R., Karami, M., Guo, R., Raglin, A., Liu, H.: Causal interpretability for machine learning-problems, methods and evaluation. ACM SIGKDD Explor. Newsl. 22(1), 18–33 (2020)
Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 607–617 (2020)
Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* 2020, pp. 607–617. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3351095.3372850
Pawelczyk, M., Broelemann, K., Kasneci, G.: Learning model-agnostic counterfactual explanations for tabular data. In: Proceedings of the Web Conference 2020, pp. 3126–3132 (2020)
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)
Rodríguez, P., et al.: Beyond trivial counterfactual explanations with diverse valuable explanations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1056–1065 (2021)
Rodríguez-Pérez, R., Bajorath, J.: Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions. J. Comput. Aided Mol. Des. 34(10), 1013–1026 (2020)
Roth, A.E.: The Shapley Value: Essays in Honor of Lloyd S Shapley. Cambridge University Press, Cambridge (1988)
Winter, E.: The shapley value. Handbook Game Theory Econ. Appl. 3, 2025–2054 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ji, J., Guan, D., Yuan, W., Deng, Y. (2024). Unified Counterfactual Explanation Framework for Black-Box Models. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14327. Springer, Singapore. https://doi.org/10.1007/978-981-99-7025-4_36
Download citation
DOI: https://doi.org/10.1007/978-981-99-7025-4_36
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-7024-7
Online ISBN: 978-981-99-7025-4
eBook Packages: Computer ScienceComputer Science (R0)