Skip to main content

Using Generating Functions to Prove Additivity of Gene-Neighborhood Based Phylogenetics - Extended Abstract

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14248))

Included in the following conference series:

  • 617 Accesses

Abstract

Prokaryotic evolution is often described as the Spaghetti of Life due to massive genome dynamics (GD) events of gene gain and loss, resulting in different evolutionary histories for the set of genes comprising the organism. These different histories, dubbed as gene trees provide confounding signals, hampering the attempt to reconstruct the species tree describing the main trend of evolution of the species under study. The synteny index (SI) between a pair of genomes combines gene order and gene content information, allowing comparison of unequal gene content genomes, together with order considerations of their common genes. Recently, GD has been modelled as a continuous-time Markov process. Under this formulation, the distance between genes along the chromosome was shown to follow a birth-death-immigration process. Using classical results from birth-death theory, we recently showed that the SI measure is consistent under that formulation. In this work, we provide an alternative, stand alone combinatorial proof of the same result. By using generating function techniques we derive explicit expressions of the system’s probabilistic dynamics in the form of rational functions of the model parameters. This, in turn, allows us to infer analytically the expected distances between organisms based on a transformation of their SI. Although the expressions obtained are rather complex, we establish additivity of this estimated evolutionary distance (a desirable property yielding phylogenetic consistency). This approach relies on holonomic functions and the Zeilberger Algorithm in order to establish additivity of the transformation of SI.

SS was supported by the Israel Science Foundation (grant No. ISF 1927/21) and the by the American/Israeli Binational Science Foundation (grant no. BSF 2021139).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adato, O., Ninyo, N., Gophna, U., Snir, S.: Detecting horizontal gene transfer between closely related taxa. PLoS Comput. Biol. 11(10), e1004408 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Allen, L.J.: An Introduction to Stochastic Processes with Applications to Biology. Chapman and Hall/CRC, Boca Raton (2010)

    Google Scholar 

  3. Anderson, W.J.: Continuous-Time Markov Chains: An Applications-Oriented Approach. Springer, Cham (2012). https://doi.org/10.1007/978-1-4612-3038-0

    Book  Google Scholar 

  4. Biller, P., Guéguen, L., Tannier, E.: Moments of genome evolution by double cut-and-join. BMC Bioinform. 16(14), S7 (2015)

    Article  Google Scholar 

  5. Chor, B., Hendy, M.D., Snir, S.: Maximum likelihood jukes-cantor triplets: analytic solutions. Mol. Biol. Evol. 23(3), 626–632 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. Chor, B., Khetan, A., Snir, S.: Maximum likelihood on four taxa phylogenetic trees: analytic solutions. In: Proceedings of the Seventh annual International Conference on Computational Molecular Biology (RECOMB), Berlin, Germany, April 2003, pp. 76–83 (2003)

    Google Scholar 

  7. Doolittle, W.F.: Phylogenetic classification and the universal tree. Science 284(5423), 2124–2128 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. Felsenstein, J.: Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27(4), 401–410 (1978)

    Article  Google Scholar 

  9. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17(6), 368–376 (1981)

    Article  CAS  PubMed  Google Scholar 

  10. Fitz Gibbon, S.T., House, C.H.: Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res. 27(21), 4218–4222 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals, 46, 1–27 (1999). ACM

    Google Scholar 

  12. Hendy, M.D., Penny, D.: A framework for the quantitative study of evolutionary trees. Syst. Zool. 38(4), 297–309 (1989)

    Article  Google Scholar 

  13. Hendy, M.D., Penny, D.: Spectral analysis of phylogenetic data. J. Classif. 10(1), 5–24 (1993)

    Article  Google Scholar 

  14. Hendy, M.D., Penny, D., Steel, M.: A discrete Fourier analysis for evolutionary trees. Proc. Natl. Acad. Sci. 91(8), 3339–3343 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547–579 (1901)

    Google Scholar 

  16. Karlin, S., McGregor, J.: The classification of birth and death processes. Trans. Am. Math. Soc. 86(2), 366–400 (1957)

    Article  Google Scholar 

  17. Karlin, S., McGregor, J.: A characterization of birth and death processes. Proc. Natl. Acad. Sci. 45(3), 375–379 (1959)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karlin, S., McGregor, J.L.: The differential equations of birth-and-death processes, and the stieltjes moment problem. Trans. Am. Math. Soc. 85(2), 489–546 (1957)

    Article  Google Scholar 

  19. Katriel, G., et al.: Gene transfer-based phylogenetics: analytical expressions and additivity via birth–death theory. System. Biol. (2023, accepted)

    Google Scholar 

  20. Koonin, E.V., Makarova, K.S., Aravind, L.: Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55(1), 709–742 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koutschan, C.: HolonomicFunctions (user’s guide). Technical report 10-01, RISC Report Series, Johannes Kepler University, Linz, Austria (2010). https://www.risc.jku.at/research/combinat/software/HolonomicFunctions/

  22. Miller, S.: The Probability Lifesaver: All the Tools You Need to Understand Chance. Princeton Lifesaver Study Guides, Princeton University Press (2017). https://books.google.co.il/books?id=VwtHvgAACAAJ

  23. Ochman, H., Lawrence, J.G., Groisman, E.A.: Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784), 299 (2000)

    Google Scholar 

  24. Sankoff, D.: Edit distance for genome comparison based on non-local operations. In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1992. LNCS, vol. 644, pp. 121–135. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-56024-6_10

    Chapter  Google Scholar 

  25. Sankoff, D., Nadeau, J.H.: Conserved synteny as a measure of genomic distance. Discret. Appl. Math. 71(1–3), 247–257 (1996)

    Article  Google Scholar 

  26. Serdoz, S., et al.: Maximum likelihood estimates of pairwise rearrangement distances. J. Theor. Biol. 423, 31–40 (2017)

    Article  PubMed  Google Scholar 

  27. Sevillya, G., Doerr, D., Lerner, Y., Stoye, J., Steel, M., Snir, S.: Horizontal gene transfer phylogenetics: a random walk approach. Mol. Biol. Evol. 37(5), 1470–1479 (2019). https://doi.org/10.1093/molbev/msz302

  28. Shifman, A., Ninyo, N., Gophna, U., Snir, S.: Phylo SI: a new genome-wide approach for prokaryotic phylogeny. Nucleic Acids Res. 42(4), 2391–2404 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Snel, B., Bork, P., Huynen, M.A.: Genome phylogeny based on gene content. Nat. Genet. 21(1), 108 (1999)

    Article  CAS  PubMed  Google Scholar 

  30. Tekaia, F., Dujon, B.: Pervasiveness of gene conservation and persistence of duplicates in cellular genomes. J. Mol. Evol. 49(5), 591–600 (1999)

    Article  CAS  PubMed  Google Scholar 

  31. Wang, L.S., Warnow, T.: Estimating true evolutionary distances between genomes. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 637–646. ACM (2001)

    Google Scholar 

  32. Wilf, H.S., Zeilberger, D.: An algorithmic proof theory for hypergeometric (ordinary and “\(q\)’’) multisum/integral identities. Invent. Math. 108(1), 575–633 (1992)

    Article  Google Scholar 

  33. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identities. Discret. Math. 80(2), 207–211 (1990). https://doi.org/10.1016/0012-365X(90)90120-7

    Article  Google Scholar 

  35. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32(3), 321–368 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagi Snir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katriel, G., Mahanaymi, U., Koutschan, C., Zeilberger, D., Steel, M., Snir, S. (2023). Using Generating Functions to Prove Additivity of Gene-Neighborhood Based Phylogenetics - Extended Abstract. In: Guo, X., Mangul, S., Patterson, M., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2023. Lecture Notes in Computer Science(), vol 14248. Springer, Singapore. https://doi.org/10.1007/978-981-99-7074-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7074-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7073-5

  • Online ISBN: 978-981-99-7074-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics