Skip to main content

Multi-class Cancer Classification of Whole Slide Images Through Transformer and Multiple Instance Learning

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2023)

Abstract

Whole slide images (WSIs) are high-resolution and lack localized annotations, whose classification can be treated as a multiple instance learning (MIL) problem while slide-level labels are available. We introduce a approach for WSI classification that leverages the MIL and Transformer, effectively eliminating the requirement for localized annotations. Our method consists of three key components. Firstly, we use ResNet50, which has been pre-trained on ImageNet, as an instance feature extractor. Secondly, we present a Transformer-based MIL aggregator that adeptly captures contextual information within individual regions and correlation information among diverse regions within the WSI. Thirdly, we introduce the global average pooling (GAP) layer to increase the mapping relationship between WSI features and category features. To evaluate our model, we conducted experiments on the The Cancer Imaging Archive (TCIA) Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset. Our proposed method achieves a top-1 accuracy of 94.8% and an area under the curve (AUC) exceeding 0.996, establishing state-of-the-art performance in WSI classification without reliance on localized annotations. The results demonstrate the superiority of our approach compared to previous MIL-based methods.

H. Luan and T. Hu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beltagy, I., Peters, M.E., Cohan, A.: Longformer: the long-document transformer. arXiv preprint arXiv:2004.05150 (2020)

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Chen, H., Qi, X., Yu, L., Heng, P.A.: Dcan: deep contour-aware networks for accurate gland segmentation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  4. Choromanski, K., et al.: Rethinking attention with performers. arXiv preprint arXiv:2009.14794 (2020)

  5. Deng, S., et al.: Deep learning in digital pathology image analysis: a survey. Front. Med. 14(4), 18 (2020)

    Article  Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=YicbFdNTTy

  7. Feng, J., Zhou, Z.H.: Deep miml network. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. AAAI’17, pp. 1884–1890. AAAI Press (2017)

    Google Scholar 

  8. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1243–1252. PMLR, 06–11 August 2017. https://proceedings.mlr.press/v70/gehring17a.html

  9. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 2127–2136. PMLR, 10–15 July 2018. https://proceedings.mlr.press/v80/ilse18a.html

  10. Islam, M.A., Jia, S., Bruce, N.D.: How much position information do convolutional neural networks encode. arXiv preprint arXiv:2001.08248 (2020)

  11. Kitaev, N., Kaiser, Ł., Levskaya, A.: Reformer: the efficient transformer. arXiv preprint arXiv:2001.04451 (2020)

  12. Kraus, O.Z., Ba, J.L., Frey, B.J.: Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32(12), i52–i59 (2016). https://doi.org/10.1093/bioinformatics/btw252

  13. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops 2021, pp. 14318–14328 (2021)

    Google Scholar 

  14. Lu, M.Y., et al.: AI-based pathology predicts origins for cancers of unknown primary. Nature 594(7861), 106–110 (2021)

    Article  CAS  PubMed  Google Scholar 

  15. Lu, M.Y., Williamson, D.F.K., Chen, T.Y., Chen, R.J., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5, 1–16 (2021)

    Article  CAS  Google Scholar 

  16. Pinheiro, P.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1713–1721 (2015). https://doi.org/10.1109/CVPR.2015.7298780

  17. Sabeena Beevi, K., Nair, M.S., Bindu, G.: Automatic mitosis detection in breast histopathology images using convolutional neural network based deep transfer learning. Biocybern. Biomed. Eng. 39(1), 214–223 (2019). https://doi.org/10.1016/j.bbe.2018.10.007, https://www.sciencedirect.com/science/article/pii/S0208521618302572

  18. Shao, Z., et al.: Transmil: transformer based correlated multiple instance learning for whole slide image classification. In: Advances in Neural Information Processing Systems, vol. 34, pp. 2136–2147 (2021)

    Google Scholar 

  19. Tay, Y., Dehghani, M., Bahri, D., Metzler, D.: Efficient transformers: a survey. ACM Comput. Surv. 55(6), 1–28 (2022)

    Article  Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. NIPS’17, pp. 6000–6010. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  21. Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: self-attention with linear complexity. arXiv preprint arXiv:2006.04768 (2020)

  22. Xing, F., Yang, L.: Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev. Biomed. Eng. 9, 234–263 (2016). https://doi.org/10.1109/RBME.2016.2515127

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xu, Y., Jia, Z., Ai, Y., Zhang, F., Lai, M., Chang, E.I.C.: Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 947–951 (2015). https://doi.org/10.1109/ICASSP.2015.7178109

  24. Zheng, Y., et al.: A graph-transformer for whole slide image classification. IEEE Trans. Med. Imaging 41(11), 3003–3015 (2022). https://doi.org/10.1109/TMI.2022.3176598

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zheng, Y., et al.: Diagnostic regions attention network (DRA-net) for histopathology WSI recommendation and retrieval. IEEE Trans. Med. Imaging 40(3), 1090–1103 (2021). https://doi.org/10.1109/TMI.2020.3046636

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant numbers 92259101) and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant number XDB38040100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beifang Niu .

Editor information

Editors and Affiliations

Ethics declarations

Availability

The pathology slides and corresponding labels for WSIs are available from the CPTAC Pathology Portal. All source code used in our study was implemented in Python using PyTorch learning library, which are available at https://github.com/Luan-zb/TMG.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luan, H. et al. (2023). Multi-class Cancer Classification of Whole Slide Images Through Transformer and Multiple Instance Learning. In: Guo, X., Mangul, S., Patterson, M., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2023. Lecture Notes in Computer Science(), vol 14248. Springer, Singapore. https://doi.org/10.1007/978-981-99-7074-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7074-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7073-5

  • Online ISBN: 978-981-99-7074-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics