Skip to main content

Phylogenetic Information as Soft Constraints in RNA Secondary Structure Prediction

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2023)

Abstract

Pseudo-energies are a generic method to incorporate extrinsic information into energy-directed RNA secondary structure predictions. Consensus structures of RNA families, usually predicted from multiple sequence alignments, can be treated as soft constraints in this manner. In this contribution we first revisit the theoretical framework and then show that pseudo-energies for the centroid base pairs of the consensus structure result in a substantial increase in folding accuracy. In contrast, only a moderate improvement can be achieved if only the information that a base is predominantly paired is utilized.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG grant number STA 850/48-1) and by the Austrian Science Fund (FWF grant number F-80 and I-4520).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ViennaRNA/ViennaRNA/blob/master/src/Utils/refold.pl.

  2. 2.

    www.bioinf.uni-leipzig.de/publications/supplements/23-002.

References

  1. Bernhart, S.H., Hofacker, I.L., Will, S., Gruber, A.R., Stadler, P.F.: RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinf. 9, 474 (2008). https://doi.org/10.1142/s0219720008003886

    Article  Google Scholar 

  2. Cordero, P., Kladwang, W., VanLang, C.C., Das, R.: Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference. Biochemistry 51, 7037–7039 (2012). https://doi.org/10.1021/bi3008802

    Article  CAS  PubMed  Google Scholar 

  3. Deigan, K.E., Li, T.W., Mathews, D.H., Weeks, K.M.: Accurate SHAPE-directed RNA structure determination. Proc. Natl. Acad. Sci. USA 106, 97–102 (2009). https://doi.org/10.1073/pnas.080692910

    Article  CAS  PubMed  Google Scholar 

  4. Ding, Y., Chan, C.Y., Lawrence, C.E.: RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA 11, 1157–1166 (2005). https://doi.org/10.1261/rna.2500605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eddy, S.R.: Computational analysis of conserved RNA secondary structure in transcriptomes and genomes. Ann. Rev. Biophys. 43, 433–456 (2014). https://doi.org/10.1146/annurev-biophys-051013-022950

    Article  CAS  Google Scholar 

  6. Freyhult, E., Moulton, V., Gardner, P.: Predicting RNA structure using mutual information. Appl. Bioinf. 4, 53–59 (2005). https://doi.org/10.2165/00822942-200504010-00006

    Article  CAS  Google Scholar 

  7. Gardner, P.P., et al.: Rfam: wikipedia, clans and the “decimal” release. Nucleic Acids Res. 39, D141–D145 (2011). https://doi.org/10.1093/nar/gkq1129

  8. Gardner, P.P., Giegerich, R.: A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinf. 5, 140 (2004). https://doi.org/10.1186/1471-2105-5-140

    Article  CAS  Google Scholar 

  9. Giegerich, R., Voß, B., Rehmsmeier, M.: Abstract shapes of RNA. Nucleic Acids Res. 32, 4843–4851 (2004). https://doi.org/10.1093/nar/gkh779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gruber, A.R., Bernhart, S.H., Hofacker, I.L., Washietl, S.: Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinf. 9, 122 (2008). https://doi.org/10.1186/1471-2105-9-122

    Article  CAS  Google Scholar 

  11. Hajdin, C.E., Bellaousov, S., Huggins, W., Leonard, C.W., Mathews, D.H., Weeks, K.M.: Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Proc. Natl. Acad. Sci. 110(14), 5498–5503 (2013). https://doi.org/10.1073/pnas.1219988110

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hajiaghayi, M., Condon, A., Hoos, H.H.: Analysis of energy-based algorithms for RNA secondary structure prediction. BMC Bioinf. 13, 22 (2012). https://doi.org/10.1186/1471-2105-13-22

    Article  CAS  Google Scholar 

  13. Harmanci, A.O., Sharma, G., Mathews, D.H.: TurboFold: iterative probabilistic estimation of secondary structures for multiple RNA sequences. BMC Bioinf. 12, 108 (2011). https://doi.org/10.1186/1471-2105-12-108

    Article  CAS  Google Scholar 

  14. Hofacker, I.L., Fekete, M., Stadler, P.F.: Secondary structure prediction for aligned RNA sequences. J. Mol. Biol. 319, 1059–1066 (2002). https://doi.org/10.1016/S0022-2836(02)00308-X

    Article  CAS  PubMed  Google Scholar 

  15. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Chem. Monthly 125, 167–188 (1994). https://doi.org/10.1007/BF00818163

    Article  CAS  Google Scholar 

  16. Kertesz, M., et al.: Genome-wide measurement of RNA secondary structure in yeast. Nature 467(7311), 103–107 (2010). https://doi.org/10.1038/nature09322

    Article  CAS  PubMed  Google Scholar 

  17. Knudsen, B., Hein, J.: Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res. 31, 3423–3428 (2003). https://doi.org/10.1093/nar/gkg614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kolberg, T., et al.: Led-seq - ligation- enhanced double-end sequence-based structure analysis of RNA. Nucleic Acids Res. (2013). https://doi.org/10.1093/nar/gkad312

  19. Kolberg, T., et al.: Led-seq - ligation- enhanced double-end sequence-based structure analysis of rna. Nucleic Acids Res. (2023). https://doi.org/10.1093/nar/gkad312

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li, T.J.X., Reidys, C.M.: On an enhancement of RNA probing data using information theory. Alg. Mol. Biol. 15, 15 (2020). https://doi.org/10.1186/s13015-020-00176-z

    Article  CAS  Google Scholar 

  21. Lorenz, R., Hofacker, I.L., Stadler, P.F.: RNA folding with hard and soft constraints. Alg. Mol. Biol. 11, 8 (2016). https://doi.org/10.1186/s13015-016-0070-z

    Article  CAS  Google Scholar 

  22. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999). https://doi.org/10.1006/jmbi.1999.2700

    Article  CAS  PubMed  Google Scholar 

  23. McCaskill, J.S.: The equilibrium partition function and base pariring probabilities for RNA secondary structures. Biopolmers 29(6–7), 1105–1119 (1990). https://doi.org/10.1002/bip.360290621

    Article  CAS  Google Scholar 

  24. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single stranded RNA. Proc. Natl. Acad. Sci. USA 77, 6309–6313 (1980). https://doi.org/10.1073/pnas.77.11.6309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ritz, J., Martin, J.S., Laederach, A.: Evolutionary evidence for alternative structure in RNA sequence co-variation. PLoS Comput. Biol. 9, e1003152 (2013). https://doi.org/10.1371/journal.pcbi.1003152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sahoo, S., Świtnicki, J.M.P., Pedersen, J.S.: ProbFold: a probabilistic method for integration of probing data in RNA secondary structure prediction. Bioinformatics 32, 2626–2635 (2016). https://doi.org/10.1093/bioinformatics/btw175

    Article  CAS  PubMed  Google Scholar 

  27. Sükösd, Z., Knudsen, B., Kjems, J., Pedersen, C.N.S.: PPfold 3.0: fast RNA secondary structure prediction using phylogeny and auxiliary data. Bioinformatics 28, 2691–2692 (2012). https://doi.org/10.1093/bioinformatics/bts488

  28. Sükösd, Z., Swenson, M.S., Kjems, J., Heitsch, C.E.: Evaluating the accuracy of SHAPE-directed RNA secondary structure predictions. Nucleic Acids Res. 41, 2807–2816 (2013). https://doi.org/10.1093/nar/gks1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sweeney, B.A., et al.: R2DT is a framework for predicting and visualising RNA secondary structure using templates. Nat. Commun. 12, 3494 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tagashira, M., Asai, K.: ConsAlifold: considering RNA structural alignments improves prediction accuracy of RNA consensus secondary structures. Bioinformatics 38(3), 710–719 (2022). https://doi.org/10.1093/bioinformatics/btab738

    Article  CAS  PubMed  Google Scholar 

  31. Tsybulskyi, V., Meyer, I.M.: ShapeSorter: a fully probabilistic method for detecting conserved RNA structure features supported by SHAPE evidence. Nucleic Acids Res. 50, e85 (2022). https://doi.org/10.1093/nar/gkac405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turner, D.H., Mathews, D.H.: NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 38, D280–D282 (2010). https://doi.org/10.1093/nar/gkp892

    Article  CAS  PubMed  Google Scholar 

  33. Wan, Y., et al.: Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505, 706–709 (2014). https://doi.org/10.1038/nature12946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Washietl, S., Hofacker, I.L., Stadler, P.F., Kellis, M.: RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction. Nucleic Acids Res. 40, 4261–4272 (2012). https://doi.org/10.1093/nar/gks009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Will, S., Joshi, T., Hofacker, I.L., Stadler, P.F., Backofen, R.: LocARNA-P: accurate boundary prediction and improved detection of structured RNAs for genome-wide screens. RNA 18, 900–914 (2012). https://doi.org/10.1261/rna.029041.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Will, S., Missal, K., Hofacker, I.L., Stadler, P.F., Backofen, R.: Inferring non-coding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput. Biol. 3, e65 (2007). https://doi.org/10.1371/journal.pcbi.0030065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zarringhalam, K., Meyer, M.M., Dotu, I., Chuang, J.H., Clote, P.: Integrating chemical footprinting data into RNA secondary structure prediction. PLOS ONE 7(10) (2012). https://doi.org/10.1371/journal.pone.0045160

  38. Zuker, M., Jaeger, J.A., Turner, D.H.: A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison. Nucleic Acids Res. 19, 2707–2714 (1991). https://doi.org/10.1093/nar/19.10.2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Stadler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

von Löhneysen, S. et al. (2023). Phylogenetic Information as Soft Constraints in RNA Secondary Structure Prediction. In: Guo, X., Mangul, S., Patterson, M., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2023. Lecture Notes in Computer Science(), vol 14248. Springer, Singapore. https://doi.org/10.1007/978-981-99-7074-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7074-2_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7073-5

  • Online ISBN: 978-981-99-7074-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics