Skip to main content

Integrative Analysis of Gene Expression and Alternative Polyadenylation from Single-Cell RNA-seq Data

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14248))

Included in the following conference series:

  • 660 Accesses

Abstract

Single-cell RNA-seq (scRNA-seq) is a powerful technique for assaying transcriptional profile of individual cells. However, high dropout rate and overdispersion inherent in scRNA-seq hinders the reliable quantification of genes. Recent bioinformatic studies switched the conventional gene-level analysis to APA (alternative polyadenylation) isoform level, and revealed cell-to-cell heterogeneity in APA usages and APA dynamics in different cell types. The additional layer of APA isoforms creates immense potential to develop cost-efficient approaches for dissecting cell types by integrating multiple modalities derived from existing scRNA-seq experiments. Here we proposed a pipeline called scAPAfuse for enhancing cell type clustering and identifying of novel/rare cell types by combing gene expression and APA profiles from the same scRNA-seq data. scAPAfuse first maps gene expression and APA profiles to a shared low-dimensional space using partial least squares. Then anchors (i.e., similar cells) between gene and APA profiles were identified by constructing the nearest neighbors of cells in the low-dimensional space, using algorithms like hyperplane local sensitive hash and shared nearest neighbor. Finally, gene and APA profiles were integrated to a fused matrix, using the Gaussian kernel function. Applying scAPAfuse on four public scRNA-seq datasets including human peripheral blood mononuclear cells (PBMCs) and Arabidopsis roots, new subpopulations of cells that were undetectable using the gene expression or APA profile alone were found. scAPAfuse provides a unique strategy to mitigate the high sparsity of scRNA-seq by fusing gene expression and APA profiles to improve cell type clustering, which can be included in many other routine scRNA-seq pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butler, A., et al.: Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kharchenko, P.V., et al.: Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grun, D., et al.: Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637–640 (2014)

    Article  PubMed  Google Scholar 

  4. Saliba, A.-E., et al.: Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845–8860 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, W., et al.: Alternative polyadenylation: methods, findings, and impacts. Genomics Proteomics Bioinf. 15, 287–300 (2017)

    Article  CAS  Google Scholar 

  6. Ye, C., et al.: Discovery of alternative polyadenylation dynamics from single cell types. Comput. Struct. Biotechnol. J. 18, 1012–1019 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zheng, G.X., et al.: Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Macosko, E.Z., et al.: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hashimshony, T., et al.: CEL-seq: single-cell RNA-seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. Wu, X., et al.: scAPAtrap: identification and quantification of alternative polyadenylation sites from single-cell RNA-seq data. Brief. Bioinform. 22 (2021)

    Google Scholar 

  11. Patrick, R., et al.: Sierra: discovery of differential transcript usage from polyA-captured single-cell RNA-seq data. Genome Biol. 21, 167 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shulman, E.D., Elkon, R.: Cell-type-specific analysis of alternative polyadenylation using single-cell transcriptomics data. Nucleic Acids Res. 47, 10027–10039 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ye, W., et al.: A survey on methods for predicting polyadenylation sites from DNA sequences, bulk RNA-seq, and single-cell RNA-seq. Genomic Proteomics Bioinf. 21, 63–79 (2023)

    Article  Google Scholar 

  14. Ji, G., et al.: stAPAminer: mining spatial patterns of alternative polyadenylation for spatially resolved transcriptomic studies. Genomic Proteomics Bioinf. (2023)

    Google Scholar 

  15. Wendrich, J.R., et al.: Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science 370 (2020)

    Google Scholar 

  16. Hie, B., et al.: Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37, 685–691 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Levine, J.H., et al.: Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haghverdi, L., et al.: Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stuart, T., et al.: Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019). e1821

    Google Scholar 

  20. Love, M.I., et al.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014)

    Article  Google Scholar 

  21. Shahan, R., et al.: A single cell Arabidopsis root atlas reveals developmental trajectories in wild type and cell identity mutants. Front. Genet. 370 (2020)

    Google Scholar 

  22. Ryu, K.H., et al.: Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiol. 179, 1444–1456 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. T2222007 to XW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, S., Kang, L., Bi, X., Wu, X. (2023). Integrative Analysis of Gene Expression and Alternative Polyadenylation from Single-Cell RNA-seq Data. In: Guo, X., Mangul, S., Patterson, M., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2023. Lecture Notes in Computer Science(), vol 14248. Springer, Singapore. https://doi.org/10.1007/978-981-99-7074-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7074-2_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7073-5

  • Online ISBN: 978-981-99-7074-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics