Skip to main content

A Brief Study of Gene Co-expression Thresholding Algorithms

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2023)

Abstract

The thresholding problem is considered in the context of high-throughput biological data. Several approaches are reviewed, implemented, and tested over an assortment of transcriptomic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allocco, D.J., Kohane, I.S., Butte, A.J.: Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioinform. 5(18) (2004)

    Google Scholar 

  2. Aoki, K., Ogata, Y., Shibata, D.: Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol. 48(3), 381–390 (2007). https://doi.org/10.1093/pcp/pcm013

    Article  CAS  PubMed  Google Scholar 

  3. Apeltsin, L., Morris, J.H., Babbitt, P.C., Ferrin, T.E.: Improving the quality of protein similarity network clustering algorithms using the network edge weight distribution. Bioinform. 27(3), 326–333 (2011). https://doi.org/10.1093/bioinformatics/btq655

  4. Bochkanov, S.: Alglib. https://www.alglib.net/ (2019)

  5. Borate, B.R., Chesler, E.J., Langston, M.A., Saxton, A.M., Voy, B.H.: Comparison of threshold selection methods for microarray gene co-expression matrices. BMC Res. Notes 2, 240 (2009). https://doi.org/10.1186/1756-0500-2-240

  6. Broido, A.D., Clauset, A.: Scale-free networks are rare. Nat. Commun. 10(1), 1017 (2019)

    Google Scholar 

  7. Chung, F.R.: Spectral graph theory. American Mathematical Soc, Providence, RI (1997)

    Google Scholar 

  8. Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)

    Article  Google Scholar 

  9. CR, B.: Data-Driven analytics for high-throughput biological applications. Ph.D. thesis, University of Tennessee (2020)

    Google Scholar 

  10. Csardi, G., Nepusz, T., et al.: The igraph software package for complex network research. Int. J. Complex Syst. 1695(5), 1–9 (2006)

    Google Scholar 

  11. Del Genio, C.I., Gross, T., Bassler, K.E.: All scale-free networks are sparse. Phys. Rev. Lett. 107, 178701 (2011). https://doi.org/10.1103/PhysRevLett.107.178701

    Article  CAS  PubMed  Google Scholar 

  12. Derényi, I., Palla, G., Vicsek, T.: Clique percolation in random networks (2005). https://doi.org/10.1103/PhysRevLett.94.160202

  13. Ding, C.H.Q., He, X., Zha, H.: A spectral method to separate disconnected and nearly-disconnected Web graph components. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’01, pp. 275–280. ACM Press, New York, USA (2004). https://doi.org/10.1145/502512.502551

  14. Ej, C., Ma, L.: Combinatorial genetic regulatory network analysis tools for high throughput transcriptomic data. Lect. Notes Comput. Sci. 4023, 150–165 (2005)

    Google Scholar 

  15. Elo, L.L., Järvenpää, H., Orešič, M., Lahesmaa, R., Aittokallio, T.: Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process. Bioinformatics 23(16), 2096–2103 (2007). https://doi.org/10.1093/bioinformatics/btm309

  16. Gibson, S.M., Ficklin, S.P., Isaacson, S., Luo, F., Feltus, F.A., Smith, M.C.: Massive-scale gene co-expression network construction and robustness testing using random matrix theory. PLoS ONE 8(2), e55871 (2013). https://doi.org/10.1371/journal.pone.0055871

  17. Gupta, A., Maranas, C.D., Albert, R.: Elucidation of directionality for co-expressed genes: predicting intra-operon termination sites. Bioinformatics 22(2), 209–214 (2006). https://doi.org/10.1093/bioinformatics/bti780

  18. Guzzi, P.H., Veltri, P., Cannataro, M.: Thresholding of semantic similarity networks using a spectral graph-based technique. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) New Frontiers in Mining Complex Patterns, pp. 201–213. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-08407-7_13

    Chapter  Google Scholar 

  19. Jay, J.J., et al.: A systematic comparison of genome scale clustering algorithms. BMC Bioinformatics 13(10) (2012). https://doi.org/10.1186/1471-2105-13-S10-S7

  20. Khanin, R., Wit, E.: How scale-free are biological networks. J. Comput. Biol. 13(3), 810–818 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. Langfelder, P., Horvath, S.: WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9(1), 559 (2008)

    Article  Google Scholar 

  22. Lee, H.K., Hsu, A.K., Sajdak, J., Qin, J., Pavlidis, P.: Coexpresion analysis of human genes across many microarray data sets. Genome Res. 14(6), 1085–1094 (2004). https://doi.org/10.1101/gr.1910904

  23. Lee, H.K., Hsu, A.K., Sajdak, J., Qin, J., Pavlidis, P.: Coexpression analysis of human genes across many microarray data sets (2019). https://doi.org/10.5683/SP2/JOJYOP

  24. Luo, F., et al.: Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinform. 8, 1–17 (2007). https://doi.org/10.1186/1471-2105-8-299

    Article  CAS  Google Scholar 

  25. Luo, F., Zhong, J., Yang, Y., Scheuermann, R.H., Zhou, J.: Application of random matrix theory to biological networks. Phys. Lett. A 357(6), 420–423 (2006). https://doi.org/10.1016/j.physleta.2006.04.076

    Article  CAS  Google Scholar 

  26. Mao, L., Van Hemert, J.L., Dash, S., Dickerson, J.A.: Arabidopsis gene co-expression network and its functional modules. BMC Bioinformatics 10(1), 346 (2009). https://doi.org/10.1186/1471-2105-10-346

  27. Mi, H., et al.: Panther version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 45(D1), D183–D189 (2017). https://doi.org/10.1093/nar/gkw1138

    Article  CAS  PubMed  Google Scholar 

  28. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005). https://doi.org/10.1038/nature03607

  29. Perkins, A.D., Langston, M.A.: Threshold selection in gene co-expression networks using spectral graph theory techniques. BMC Bioinform. 10(Suppl 11), S4 (2009). https://doi.org/10.1186/1471-2105-10-S11-S4

    Article  CAS  Google Scholar 

  30. Hagan, R.D., Langston, M.A., Wang, K.: Lower bounds on paraclique density. Discrete Appl. Math. 204, 208–212 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  31. The Gene Ontology, C., et al.: Gene ontology: tool for the unification of biology. Nat. Gen. 25(1), 25–29 (2000). https://doi.org/10.1038/75556

  32. Wang, K., Phillips, C.A., Saxton, A.M., Langston, M.A.: EntropyExplorer: an R package for computing and comparing differential Shannon entropy, differential coefficient of variation and differential expression. BMC. Res. Notes 8, 832 (2015). https://doi.org/10.1186/s13104-015-1786-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998). https://doi.org/10.1038/30918

  34. Wolfe, C.J., Kohane, I.S., Butte, A.J.: Systematic survey reveals general applicability of guilt-by-association within gene coexpression networks. BMC Bioinformatics 6(227) (2005). https://doi.org/10.1186/1471-2105-6-227

  35. Zhang, B., Horvath, S.: A general framework for weighted gene co-expression network analysis. Statistical applications in genetics and molecular biology 4(1) (2005). https://doi.org/10.2202/1544-6115.1128

Download references

Acknowledgements

This research was supported in part by the National Institutes of Health under grant R01HD092653 and by the Environmental Protection Agency under grant G17D112354237. It also employed resources of the National Energy Research Scientific Computing Center, a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory and operated under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CB, ML; Methodology: CB, ML; Formal analysis: CB, SG, ML; Software: CB, SG; Writing: CB, SG, ML; Supervision: ML; Funding acquisition: ML.

Corresponding author

Correspondence to Carissa Bleker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bleker, C., Grady, S.K., Langston, M.A. (2023). A Brief Study of Gene Co-expression Thresholding Algorithms. In: Guo, X., Mangul, S., Patterson, M., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2023. Lecture Notes in Computer Science(), vol 14248. Springer, Singapore. https://doi.org/10.1007/978-981-99-7074-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7074-2_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7073-5

  • Online ISBN: 978-981-99-7074-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics