Skip to main content

Detection of Depression and Its Likelihood in Children and Adolescents: Evidence from a 15-Years Study

  • Conference paper
  • First Online:
Health Information Science (HIS 2023)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AIHW. Mental health: prevalence and impact. In: Mental Health Services in Australia. AIHW, Canberra (2022)

    Google Scholar 

  2. Ay, B., et al.: Automated depression detection using deep representation and sequence learning with EEG signals. J. Med. Syst. 43, 1–12 (2019)

    Article  Google Scholar 

  3. Burdisso, S.G., Errecalde, M., Montes-y-Gómez, M.: A text classification framework for simple and effective early depression detection over social media streams. Expert Syst. Appl. 133, 182–197 (2019)

    Article  Google Scholar 

  4. Zhang, B., et al.: Ubiquitous depression detection of sleep physiological data by using combination learning and functional networks. IEEE Access 8, 94220–94235 (2020)

    Article  Google Scholar 

  5. Habtamu, K., et al.: Interventions to improve the detection of depression in primary healthcare: systematic review. Syst. Rev. 12(1), 1–28 (2023)

    Article  Google Scholar 

  6. Nisar, A., et al.: Prevalence of perinatal depression and its determinants in Mainland China: a systematic review and meta-analysis. J. Affect. Disord. 277, 1022–1037 (2020)

    Article  Google Scholar 

  7. Zenebe, Y., Akele, B., Necho, M.: Prevalence and determinants of depression among old age: a systematic review and meta-analysis. Ann. Gen. Psychiatry 20(1), 1–19 (2021)

    Article  Google Scholar 

  8. Othman, N., et al.: Perceived impact of contextual determinants on depression, anxiety and stress: a survey with university students. Int. J. Ment. Heal. Syst. 13(1), 1–9 (2019)

    MathSciNet  Google Scholar 

  9. Islam, M.R., et al.: Depression detection from social network data using machine learning techniques. Health Inf. Sci. Syst. 6(1), 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  10. Nguyen, M.-H., et al.: A dataset of students’ mental health and help-seeking behaviors in a multicultural environment. Data 4(3), 124 (2019)

    Article  Google Scholar 

  11. Priya, A., Garg, S., Tigga, N.P.: Predicting anxiety, depression and stress in modern life using machine learning algorithms. Procedia Comput. Sci. 167, 1258–1267 (2020)

    Article  Google Scholar 

  12. Cacheda, F., et al.: Early detection of depression: social network analysis and random forest techniques. J. Med. Internet Res. 21(6), e12554 (2019)

    Article  Google Scholar 

  13. Pflueger, M.O., et al.: Predicting general criminal recidivism in mentally disordered offenders using a random forest approach. BMC Psychiatry 15(1), 1–10 (2015)

    Article  Google Scholar 

  14. Haque, U.M., Kabir, E., Khanam, R.: Detection of child depression using machine learning methods. PLoS ONE 16(12), e0261131 (2021)

    Article  Google Scholar 

  15. Green, H., et al.: Mental Health of Children and Young People in Great Britain. Palgrave Macmillan, Basingstoke (2005)

    Google Scholar 

  16. Kubinger, K.D.: On artificial results due to using factor analysis for dichotomous variables. Psychol. Sci. 45(1), 106–110 (2003)

    Google Scholar 

  17. Kursa, M.B., Jankowski, A., Rudnicki, W.R.: Boruta–a system for feature selection. Fund. Inform. 101(4), 271–285 (2010)

    MathSciNet  Google Scholar 

  18. Kursa, M.B.: Boruta for those in a hurry (2020)

    Google Scholar 

  19. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  20. Cortes, C., Vapnik, V.: Support vector machine. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  21. Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, vol. 398. Wiley, Hoboken (2013)

    Google Scholar 

  22. Soloff, C., Lawrence, D., Johnstone, R.: Sample Design. Australian Institute of Family Studies, Melbourne (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umme Marzia Haque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haque, U.M., Kabir, E., Khanam, R. (2023). Detection of Depression and Its Likelihood in Children and Adolescents: Evidence from a 15-Years Study. In: Li, Y., Huang, Z., Sharma, M., Chen, L., Zhou, R. (eds) Health Information Science. HIS 2023. Lecture Notes in Computer Science, vol 14305. Springer, Singapore. https://doi.org/10.1007/978-981-99-7108-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7108-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7107-7

  • Online ISBN: 978-981-99-7108-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics