Skip to main content

BiblioEngine: An AI-Empowered Platform for Disease Genetic Knowledge Mining

  • Conference paper
  • First Online:
Health Information Science (HIS 2023)

Abstract

Recent decades have seen significant advancements in contemporary genetic research with the aid of artificial intelligence (AI) techniques. However, researchers lack a comprehensive platform for fully exploiting these AI tools and conducting customized analyses. This paper introduces BiblioEngine, a literature analysis platform that helps researchers profile the research landscape and gain genetic insights into diseases. BiblioEngine integrates multiple AI-empowered data sources and employs heterogeneous network analysis to identify and emphasize genes and other biomedical entities for further investigation. Its effectiveness is demonstrated through a case study on stroke-related genetic research. Analysis with BiblioEngine uncovers valuable research intelligence and genetic insights. It provides a profile of leading research institutions and the knowledge landscape in the field. The gene co-occurrence map reveals frequent research of NOTCH3, prothrombotic factors, inflammatory cytokines, and other potential risk factors. The heterogeneous biomedical entity network analysis highlights infrequently studied genes and biomedical entities with potential significance for future stroke studies. In conclusion, BiblioEngine is a valuable tool enabling efficient navigation and comprehension of expanding biomedical knowledge from scientific literature, empowering researchers in their pursuit of disease-specific genetic knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://openalex.org/.

  2. 2.

    https://www.ncbi.nlm.nih.gov/research/pubtator/.

  3. 3.

    https://xmind.app/.

  4. 4.

    http://mkweb.bcgsc.ca/tableviewer/visualize/.

References

  1. Banerjee, I., Gupta, V., Ahmed, T., Faizaan, M., Agarwal, P., Ganesh, S.: Inflammatory system gene polymorphism and the risk of stroke: a case-control study in an Indian population. Brain Res. Bull. 75(1), 158–165 (2008)

    Article  Google Scholar 

  2. Curry, C.J., Bhullar, S., Holmes, J., Delozier, C.D., Roeder, E.R., Hutchison, H.T.: Risk factors for perinatal arterial stroke: a study of 60 mother-child pairs. Pediatr. Neurol. 37(2), 99–107 (2007)

    Article  Google Scholar 

  3. Fathy, N., Kortam, M.A., Shaker, O.G., Sayed, N.H.: Long noncoding RNAs MALAT1 and ANRIL gene variants and the risk of cerebral ischemic stroke: an association study. ACS Chem. Neurosci. 12(8), 1351–1362 (2021)

    Article  Google Scholar 

  4. Gao, X., Yang, H., ZhiPing, T.: Association studies of genetic polymorphism, environmental factors and their interaction in ischemic stroke. Neurosci. Lett. 398(3), 172–177 (2006)

    Article  Google Scholar 

  5. Guo, K., et al.: Artificial intelligence-driven biomedical genomics. Knowl.-Based Syst. (2023, accepted)

    Google Scholar 

  6. Hsu, F.C., et al.: Transcobalamin 2 variant associated with poststroke homocysteine modifies recurrent stroke risk. Neurology 77(16), 1543–1550 (2011)

    Article  Google Scholar 

  7. Jeon, Y.J., et al.: Association of the miR-146a, miR-149, miR-196a2, and miR-499 polymorphisms with ischemic stroke and silent brain infarction risk. Arterioscler. Thromb. Vasc. Biol. 33(2), 420–430 (2013)

    Article  Google Scholar 

  8. Jickling, G.C., Ander, B.P., Zhan, X., Noblett, D., Stamova, B., Liu, D.: microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS ONE 9(6), e99283 (2014)

    Article  Google Scholar 

  9. Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., Zhang, G.: Transfer learning using computational intelligence: a survey. Knowl.-Based Syst. 80, 14–23 (2015)

    Article  Google Scholar 

  10. Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G.: Recommender system application developments: a survey. Decis. Support Syst. 74, 12–32 (2015)

    Article  Google Scholar 

  11. Nowak-Göttl, U., Langer, C., Bergs, S., Thedieck, S., Sträter, R., Stoll, M.: Genetics of hemostasis: differential effects of heritability and household components influencing lipid concentrations and clotting factor levels in 282 pediatric stroke families. Environ. Health Perspect. 116(6), 839–843 (2008)

    Article  Google Scholar 

  12. Tian, Y., et al.: Effects of gender on gene expression in the blood of ischemic stroke patients. J. Cerebral Blood Flow Metab. 32(5), 780–791 (2012)

    Article  Google Scholar 

  13. Wang, T.J., et al.: Multiple mechanistic models reveal the neuroprotective effects of diterpene ginkgolides against astrocyte-mediated demyelination via the PAF-PAFR pathway. Am. J. Chin. Med. 50(06), 1565–1597 (2022)

    Article  Google Scholar 

  14. Wu, M., Zhang, Y., Zhang, G., Lu, J.: Exploring the genetic basis of diseases through a heterogeneous bibliometric network: a methodology and case study. Technol. Forecast. Soc. Chang. 164, 120513 (2021)

    Article  Google Scholar 

  15. Zhang, Y., Wu, M., Tian, G.Y., Zhang, G., Lu, J.: Ethics and privacy of artificial intelligence: understandings from bibliometrics. Knowl.-Based Syst. 222, 106994 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Australian Research Council Linkage Project LP210100414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, M., Zhang, Y., Lin, H., Grosser, M., Zhang, G., Lu, J. (2023). BiblioEngine: An AI-Empowered Platform for Disease Genetic Knowledge Mining. In: Li, Y., Huang, Z., Sharma, M., Chen, L., Zhou, R. (eds) Health Information Science. HIS 2023. Lecture Notes in Computer Science, vol 14305. Springer, Singapore. https://doi.org/10.1007/978-981-99-7108-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7108-4_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7107-7

  • Online ISBN: 978-981-99-7108-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics