Skip to main content

Image Recognition of Chicken Diseases Based on Improved Residual Networks

  • Conference paper
  • First Online:
Health Information Science (HIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14305))

Included in the following conference series:

  • 292 Accesses

Abstract

Poultry diseases are one of the significant issues that need to be addressed in poultry farming today. In order to contribute to the prevention and control of poultry diseases and promote the healthy development of poultry farming, this paper focuses on a collected dataset of chicken manure images and proposes an improved chicken disease image recognition model based on ResNet18. The model utilizes ResNet18 as the underlying framework and incorporates attention mechanisms into the ResNet18 network model. It also includes a fully connected layer (Fc1) and Dropout for enhanced performance. Transfer learning is employed to train the model by freezing some layers of the pre-trained model to reduce training time. The Adam optimization algorithm is used to update gradients, and a cosine annealing method is implemented to decay the learning rate. Experimental results demonstrate that the improved ResNet18 network achieves an accuracy of 97.81% in chicken disease image recognition, which is 1.27% higher than the accuracy of the original ResNet18 network. This improved model exhibits superior performance and provides valuable insights for the analysis of chicken disease images.

Supported by the National Natural Science Foundation of China under Grant U22A20102; the Key Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJZD-K202101305); Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxmX0495, cstc2021jcyj-msxmX0654); the Yingcai Program of Chongqing, China(Grant No. cstc2021ycjh-bgzxm0218).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, J., Sun, R., Jin, C., Yin, B.: Research on the identification method of intestinal diseases in laying hens based on multi-scale convolution. China Agric. Inform. 34, 14–26 (2022)

    Google Scholar 

  2. Arya, S., Singh, R.: A comparative study of CNN and AlexNet for detection of disease in potato and mango leaf. In: 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT) (2019)

    Google Scholar 

  3. Zhang, J., Kong, F., Wu, J., Zhai, Z., Han, S., Cao, S.: Cotton disease identification model based on improved VGG convolution neural network. J. China Agric. Univ. 23, 161–171 (2018)

    Google Scholar 

  4. Brahimi, M., Boukhalfa, K., Moussaoui, A.: Deep learning for tomato diseases: classification and symptoms visualization. Appl. Artif. Intell. 31(4–6), 1–17 (2017)

    Google Scholar 

  5. Tan, Y., Ouyang, C., Li, L., Liao, T., Tang, P.: Image recognition of rice diseases based on deep convolutional neural network. J. Jinggangshan Univ. (Nat. Sci.) 40, 31–38 (2019)

    Google Scholar 

  6. Malathi, V., Gopinath, M.P.: Classification of diseases in paddy using deep convolutional neural network. In: Journal of Physics: Conference Series, vol. 1964, no. 4, p. 042028 (2021)

    Google Scholar 

  7. Chen, J., Chen, L., Wang, S., Zhao, H., Wen, C.: Pest image recognition of garden based on improved residual network. Trans. Chin. Soc. Agric. Mach. 50, 187–195 (2019)

    Google Scholar 

  8. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. Comput. Sci. 2048–2057 (2015)

    Google Scholar 

  9. Long, C., Zhang, H., Xiao, J., Nie, L., Chua, T.S.: SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  10. Pang, B.: Classification of images using EfficientNet CNN model with convolutional block attention module (CBAM) and spatial group-wise enhance module (SGE). In: Agyeman, M.O., Sirkemaa, S. (eds.) International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2022), vol. 12247, p. 1224707. International Society for Optics and Photonics, SPIE (2022)

    Google Scholar 

  11. Wei, F., Zhang, Z., Liang, G.: Research on application of insect species image recognition based on convolutional neural network. J. Henan Normal Univ. (Nat. Sci. Ed.) 50, 96–105 (2022)

    Google Scholar 

  12. Wan, P., et al.: Freshwater fish species identification method based on improved ResNet50 model. Trans. Chin. Soc. Agric. Eng. 37, 159–168 (2021)

    Google Scholar 

  13. Sarki, R., Ahmed, K., Wang, H., Zhang, Y., Wang, K.: Convolutional neural network for multi-class classification of diabetic eye disease. EAI Endorsed Trans. Scalable Inf. Syst. e15–e15 (2022)

    Google Scholar 

  14. Siddiqui, S.A., Fatima, N., Ahmad, A.: Chest X-ray and CT scan classification using ensemble learning through transfer learning. EAI Endorsed Trans. Scalable Inf. Syst. 9(6), e8 (2022)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. IEEE (2016)

    Google Scholar 

  16. Li, L., Tian, W., Chen, L.: Wild plant image recognition method based on residual network and transfer learning. Radio Eng. 51, 857–863 (2021)

    Google Scholar 

  17. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization (2017)

    Google Scholar 

  18. Pan, L., et al.: MFDNN: multi-channel feature deep neural network algorithm to identify Covid-19 chest X-ray images. Health Inf. Sci. Syst. 10(1) (2022)

    Google Scholar 

  19. Du, J., Michalska, S., Subramani, S., Wang, H., Zhang, Y.: Neural attention with character embeddings for hay fever detection from Twitter. Health Inf. Sci. Syst. 7(1), 1–7 (2019)

    Article  Google Scholar 

  20. Chen, H., Han, Y.: Tire classification based on attention mechanism and transfer learning. Software 43, 65–69 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqiang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, N., Ma, X., Huang, Y., Bai, J. (2023). Image Recognition of Chicken Diseases Based on Improved Residual Networks. In: Li, Y., Huang, Z., Sharma, M., Chen, L., Zhou, R. (eds) Health Information Science. HIS 2023. Lecture Notes in Computer Science, vol 14305. Springer, Singapore. https://doi.org/10.1007/978-981-99-7108-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7108-4_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7107-7

  • Online ISBN: 978-981-99-7108-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics