Skip to main content

Robust Input Shaping for Swing Control of an Overhead Crane

  • Conference paper
  • First Online:
Methods and Applications for Modeling and Simulation of Complex Systems (AsiaSim 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1912))

Included in the following conference series:

  • 409 Accesses

Abstract

Underactuated robotic and mechatronic systems have been employed in many practical applications for a long time. It is crucial to increase crane efficiency for practical applications; yet the primary factor limiting crane efficiency is the payload swing driven on by inertia or outside disturbances. The swing of the crane's payload mass, which moves like a pendulum, has created numerous challenges since it can collide with the operator and result in accidents. This paper presents the simulation implementation of an open-loop input-shaper controller to control the swing angle of an overhead crane. A mathematical model of the two-dimensional overhead crane and input shaper controller was constructed. The model of the overhead crane and the input shaper was created in MATLAB/Simulink and the simulation was executed. This paper evaluated the performance and robustness of input shaping techniques with constant cable length using the zero vibration (ZV), zero vibration derivative (ZVD), zero vibration derivative-derivative (ZVDD), and zero vibration derivative-derivative-derivative (ZVDDD). The payload mass varied in two cases which are 1 kg and 0.3 kg. Based on the simulation results, ZVDDD controller showed the highest reductions in the overall and residual payload swing with 91% for both cases. It is envisaged that the proposed method can be used for improving the robustness of input shapers for payload swing suppression of an overhead crane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramli, L., Mohamed, Z., Abdullahi, A.M., Jaafar, H.I., Lazim, I.M.: Control strategies for crane systems: A comprehensive review. Mech. Syst. Signal Process. 95, 1–23 (2017). https://doi.org/10.1016/j.ymssp.2017.03.015

    Article  Google Scholar 

  2. Mojallizadeh, M.R., Brogliato, B., Prieur, C.: Modeling and control of overhead cranes: A tutorial overview and perspectives. Annu. Rev. Control March, 100877 (2023). https://doi.org/10.1016/j.arcontrol.2023.03.002

  3. Ramli, L., Mohamed, Z., Efe, M., Lazim, I.M., Jaafar, H.I.: Efficient swing control of an overhead crane with simultaneous payload hoisting and external disturbances. Mech. Syst. Signal Process. 135(1), 106326 (2020). https://doi.org/10.1016/j.ymssp.2019.106326

  4. Zheng, F., Yang, C.H., Hao, G., Wang, K.C., Hong, H.L.: Vision-based fuzzy proportional–integral–derivative tracking control scheme for gantry crane system. Sensors Mater. 33(9), 3333–3344 (2021). https://doi.org/10.18494/SAM.2021.3403

    Article  Google Scholar 

  5. Azmi, N.I.M., Yahya, N.M., Fu, H.J., Yusoff, W.A.W.: Optimization of the PID-PD parameters of the overhead crane control system by using PSO algorithm. MATEC Web Conf. 255, 04001 (2019). https://doi.org/10.1051/matecconf/201925504001

    Article  Google Scholar 

  6. Wang, T., Tan, N., Zhou, C., Zhang, C., Zhi, Y.: A novel anti-swing positioning controller for two dimensional bridge crane via dynamic sliding mode variable structure. Procedia Comput. Sci. 131, 626–632 (2018). https://doi.org/10.1016/j.procs.2018.04.305

    Article  Google Scholar 

  7. Wu, X., Xu, K., Lei, M., He, X.: Disturbance-compensation-based continuous sliding mode control for overhead cranes with disturbances. IEEE Trans. Autom. Sci. Eng. 17(4), 2182–2189 (2020). https://doi.org/10.1109/TASE.2020.3015870

    Article  Google Scholar 

  8. Wu, Y., Sun, N., Chen, H., Fang, Y.: Adaptive output feedback control for 5-DOF varying-cable-length tower cranes with cargo mass estimation. IEEE Trans. Ind. Informatics 17(4), 2453–2464 (2021). https://doi.org/10.1109/TII.2020.3006179

    Article  Google Scholar 

  9. Wu, Q., Wang, X., Hua, L., Xia, M.: Modeling and nonlinear sliding mode controls of double pendulum cranes considering distributed mass beams, varying roped length and external disturbances. Mech. Syst. Signal Process. 158, 107756 (2021). https://doi.org/10.1016/j.ymssp.2021.107756

    Article  Google Scholar 

  10. Mohammed, A., Alghanim, K., Andani, M.T.: An optimized non-linear input shaper for payload oscillation suppression of crane point-to-point maneuvers. Int. J. Dyn. Control 7(2), 567–576 (2019). https://doi.org/10.1007/s40435-019-00536-7

    Article  MathSciNet  Google Scholar 

  11. Liu, H., Cheng, W.: Using the bezier curve and particle swarm optimization in trajectory planning for overhead cranes to suppress the payloads’ residual swing. Math. Probl. Eng. 2018 (2018). https://doi.org/10.1155/2018/3129067

  12. Wu, X., Xu, K., He, X.: Disturbance-observer-based nonlinear control for overhead cranes subject to uncertain disturbances. Mech. Syst. Signal Process. 139, 106631 (2020). https://doi.org/10.1016/j.ymssp.2020.106631

    Article  Google Scholar 

  13. Mary, A.H., Miry, A.H., Kara, T., Miry, M.H.: Nonlinear state feedback controller combined with RBF for nonlinear underactuated overhead crane system. J. Eng. Res. 9(3), 197–208 (2021). https://doi.org/10.36909/jer.v9i3A.9159

    Article  Google Scholar 

  14. Miranda-Colorado, R.: Robust observer-based anti-swing control of 2D-crane systems with load hoisting-lowering. Nonlinear Dyn. 104(4), 3581–3596 (2021). https://doi.org/10.1007/s11071-021-06443-x

    Article  Google Scholar 

  15. Conker, C., Yavuz, H., Bilgic, H.H.: 2097 A review of command shaping techniques for elimination of residual vibrations in flexible-joint manipulators, pp. 2947–2958 (2016)

    Google Scholar 

  16. Gniadek, M., Brock, S.: Basic algorithms of input shaping autotuning. MM Sci. J. 2015(1), 627–630 (2015 October). https://doi.org/10.17973/MMSJ.2015_10_201509

  17. Maghsoudi, M.J., Mohamed, Z., Sudin, S., Buyamin, S., Jaafar, H.I., Ahmad, S.M.: An improved input shaping design for an efficient sway control of a nonlinear 3D overhead crane with friction. Mech. Syst. Signal Process. 92, 364–378 (2017). https://doi.org/10.1016/j.ymssp.2017.01.036

    Article  Google Scholar 

  18. Maghsoudi, M.J., Nacer, H., Tokhi, M.O., Mohamed, Z.: A Novel Approach in S-Shaped Input Design for Higher Vibration Reduction (2018)

    Google Scholar 

  19. Iplikci, S., Maghsoudi, M.J., Mohamed, Z., Tokhi, M.O., Husain, A.R., Abidin, M.S.Z.: Control of a gantry crane using input-shaping schemes with distributed delay. Trans. Inst. Meas. Control. 39(3), 361–370 (2017). https://doi.org/10.1177/0142331215607615

    Article  Google Scholar 

  20. Mohammed, A., Alghanim, K., Taheri Andani, M.: An adjustable zero vibration input shaping control scheme for overhead crane systems. Shock Vib. 2020 (2020). https://doi.org/10.1155/2020/7879839

  21. Jaafar, M.S.H.I., Mohame, Z., Ahmad, M.A., Wahab, N.A., Ramli, L.: Control of an underactuated double-pendulum overhead crane using model reference command shaping: Design. Simulation and Experiment 151, 1–18 (2020). https://doi.org/10.1016/j.ymssp.2020.107358

  22. La, V.D., Nguyen, K.T.: Combination of input shaping and radial spring-damper to reduce tridirectional vibration of crane payload. Mech. Syst. Signal Process. 116, 310–321 (2019). https://doi.org/10.1016/j.ymssp.2018.06.056

    Article  Google Scholar 

  23. Stein, A., Singh, T.: Minimum time control of a gantry crane system with rate constraints. Mech. Syst. Signal Process 190(August 2022), 110120 (2023). https://doi.org/10.1016/j.ymssp.2023.110120

  24. Goubej, M., Schlegel, M., Vyhlídal, T.: Robust controller design for feedback architectures with signal shapers. IFAC-PapersOnLine 53(2), 8650–8655 (2020). https://doi.org/10.1016/j.ifacol.2020.12.461

    Article  Google Scholar 

  25. Solihin, M.I., Wahyudi, Kamal, M.A.S., Legowo, A.: Optimal PID controller tuning of automatic gantry crane using PSO algorithm. In: Proceeding 5th Int. Symp. Mechatronics its Appl. ISMA 2008, pp. 25–29 (2008). https://doi.org/10.1109/ISMA.2008.4648804

  26. Ramli, L., Mohamed, Z., Jaafar, H.I.: A neural network-based input shaping for swing suppression of an overhead crane under payload hoisting and mass variations. Mech. Syst. Signal Process. 107(March), 484–501 (2018). https://doi.org/10.1016/j.ymssp.2018.01.029

    Article  Google Scholar 

  27. Piedrafita, R., Comín, D., Beltrán, J.R.: Simulink® implementation and industrial test of Input Shaping techniques. Control. Eng. Pract. 79(June), 1–21 (2018). https://doi.org/10.1016/j.conengprac.2018.06.021

    Article  Google Scholar 

  28. Alhassan, A., Mohamed, Z., Abdullahi, A.M., Bature, A.A., Haruna, A., Tahir, N.M.: Input shaping techniques for sway control of a rotary crane system. J. Teknol. 80(1), 61–69 (2018). https://doi.org/10.11113/jt.v80.10297

    Article  Google Scholar 

  29. Richiedei, D.: Adaptive shaper-based filters for fast dynamic filtering of load cell measurements. Mech. Syst. Signal Process. 167(PA), 108541 (2022). https://doi.org/10.1016/j.ymssp.2021.108541

Download references

Acknowledgement

The authors gratefully acknowledge the Malaysian Education Ministry for the financial support it provided via the Fundamental Grant Research Scheme (FRGS/1/2020/TK0/ USIM/02/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyana Ramli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Awi, A.A.M., Zawawi, S.S.N.N., Ramli, L., Lazim, I.M. (2024). Robust Input Shaping for Swing Control of an Overhead Crane. In: Hassan, F., Sunar, N., Mohd Basri, M.A., Mahmud, M.S.A., Ishak, M.H.I., Mohamed Ali, M.S. (eds) Methods and Applications for Modeling and Simulation of Complex Systems. AsiaSim 2023. Communications in Computer and Information Science, vol 1912. Springer, Singapore. https://doi.org/10.1007/978-981-99-7243-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7243-2_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7242-5

  • Online ISBN: 978-981-99-7243-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics