Abstract
Underactuated robotic and mechatronic systems have been employed in many practical applications for a long time. It is crucial to increase crane efficiency for practical applications; yet the primary factor limiting crane efficiency is the payload swing driven on by inertia or outside disturbances. The swing of the crane's payload mass, which moves like a pendulum, has created numerous challenges since it can collide with the operator and result in accidents. This paper presents the simulation implementation of an open-loop input-shaper controller to control the swing angle of an overhead crane. A mathematical model of the two-dimensional overhead crane and input shaper controller was constructed. The model of the overhead crane and the input shaper was created in MATLAB/Simulink and the simulation was executed. This paper evaluated the performance and robustness of input shaping techniques with constant cable length using the zero vibration (ZV), zero vibration derivative (ZVD), zero vibration derivative-derivative (ZVDD), and zero vibration derivative-derivative-derivative (ZVDDD). The payload mass varied in two cases which are 1 kg and 0.3 kg. Based on the simulation results, ZVDDD controller showed the highest reductions in the overall and residual payload swing with 91% for both cases. It is envisaged that the proposed method can be used for improving the robustness of input shapers for payload swing suppression of an overhead crane.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ramli, L., Mohamed, Z., Abdullahi, A.M., Jaafar, H.I., Lazim, I.M.: Control strategies for crane systems: A comprehensive review. Mech. Syst. Signal Process. 95, 1–23 (2017). https://doi.org/10.1016/j.ymssp.2017.03.015
Mojallizadeh, M.R., Brogliato, B., Prieur, C.: Modeling and control of overhead cranes: A tutorial overview and perspectives. Annu. Rev. Control March, 100877 (2023). https://doi.org/10.1016/j.arcontrol.2023.03.002
Ramli, L., Mohamed, Z., Efe, M., Lazim, I.M., Jaafar, H.I.: Efficient swing control of an overhead crane with simultaneous payload hoisting and external disturbances. Mech. Syst. Signal Process. 135(1), 106326 (2020). https://doi.org/10.1016/j.ymssp.2019.106326
Zheng, F., Yang, C.H., Hao, G., Wang, K.C., Hong, H.L.: Vision-based fuzzy proportional–integral–derivative tracking control scheme for gantry crane system. Sensors Mater. 33(9), 3333–3344 (2021). https://doi.org/10.18494/SAM.2021.3403
Azmi, N.I.M., Yahya, N.M., Fu, H.J., Yusoff, W.A.W.: Optimization of the PID-PD parameters of the overhead crane control system by using PSO algorithm. MATEC Web Conf. 255, 04001 (2019). https://doi.org/10.1051/matecconf/201925504001
Wang, T., Tan, N., Zhou, C., Zhang, C., Zhi, Y.: A novel anti-swing positioning controller for two dimensional bridge crane via dynamic sliding mode variable structure. Procedia Comput. Sci. 131, 626–632 (2018). https://doi.org/10.1016/j.procs.2018.04.305
Wu, X., Xu, K., Lei, M., He, X.: Disturbance-compensation-based continuous sliding mode control for overhead cranes with disturbances. IEEE Trans. Autom. Sci. Eng. 17(4), 2182–2189 (2020). https://doi.org/10.1109/TASE.2020.3015870
Wu, Y., Sun, N., Chen, H., Fang, Y.: Adaptive output feedback control for 5-DOF varying-cable-length tower cranes with cargo mass estimation. IEEE Trans. Ind. Informatics 17(4), 2453–2464 (2021). https://doi.org/10.1109/TII.2020.3006179
Wu, Q., Wang, X., Hua, L., Xia, M.: Modeling and nonlinear sliding mode controls of double pendulum cranes considering distributed mass beams, varying roped length and external disturbances. Mech. Syst. Signal Process. 158, 107756 (2021). https://doi.org/10.1016/j.ymssp.2021.107756
Mohammed, A., Alghanim, K., Andani, M.T.: An optimized non-linear input shaper for payload oscillation suppression of crane point-to-point maneuvers. Int. J. Dyn. Control 7(2), 567–576 (2019). https://doi.org/10.1007/s40435-019-00536-7
Liu, H., Cheng, W.: Using the bezier curve and particle swarm optimization in trajectory planning for overhead cranes to suppress the payloads’ residual swing. Math. Probl. Eng. 2018 (2018). https://doi.org/10.1155/2018/3129067
Wu, X., Xu, K., He, X.: Disturbance-observer-based nonlinear control for overhead cranes subject to uncertain disturbances. Mech. Syst. Signal Process. 139, 106631 (2020). https://doi.org/10.1016/j.ymssp.2020.106631
Mary, A.H., Miry, A.H., Kara, T., Miry, M.H.: Nonlinear state feedback controller combined with RBF for nonlinear underactuated overhead crane system. J. Eng. Res. 9(3), 197–208 (2021). https://doi.org/10.36909/jer.v9i3A.9159
Miranda-Colorado, R.: Robust observer-based anti-swing control of 2D-crane systems with load hoisting-lowering. Nonlinear Dyn. 104(4), 3581–3596 (2021). https://doi.org/10.1007/s11071-021-06443-x
Conker, C., Yavuz, H., Bilgic, H.H.: 2097 A review of command shaping techniques for elimination of residual vibrations in flexible-joint manipulators, pp. 2947–2958 (2016)
Gniadek, M., Brock, S.: Basic algorithms of input shaping autotuning. MM Sci. J. 2015(1), 627–630 (2015 October). https://doi.org/10.17973/MMSJ.2015_10_201509
Maghsoudi, M.J., Mohamed, Z., Sudin, S., Buyamin, S., Jaafar, H.I., Ahmad, S.M.: An improved input shaping design for an efficient sway control of a nonlinear 3D overhead crane with friction. Mech. Syst. Signal Process. 92, 364–378 (2017). https://doi.org/10.1016/j.ymssp.2017.01.036
Maghsoudi, M.J., Nacer, H., Tokhi, M.O., Mohamed, Z.: A Novel Approach in S-Shaped Input Design for Higher Vibration Reduction (2018)
Iplikci, S., Maghsoudi, M.J., Mohamed, Z., Tokhi, M.O., Husain, A.R., Abidin, M.S.Z.: Control of a gantry crane using input-shaping schemes with distributed delay. Trans. Inst. Meas. Control. 39(3), 361–370 (2017). https://doi.org/10.1177/0142331215607615
Mohammed, A., Alghanim, K., Taheri Andani, M.: An adjustable zero vibration input shaping control scheme for overhead crane systems. Shock Vib. 2020 (2020). https://doi.org/10.1155/2020/7879839
Jaafar, M.S.H.I., Mohame, Z., Ahmad, M.A., Wahab, N.A., Ramli, L.: Control of an underactuated double-pendulum overhead crane using model reference command shaping: Design. Simulation and Experiment 151, 1–18 (2020). https://doi.org/10.1016/j.ymssp.2020.107358
La, V.D., Nguyen, K.T.: Combination of input shaping and radial spring-damper to reduce tridirectional vibration of crane payload. Mech. Syst. Signal Process. 116, 310–321 (2019). https://doi.org/10.1016/j.ymssp.2018.06.056
Stein, A., Singh, T.: Minimum time control of a gantry crane system with rate constraints. Mech. Syst. Signal Process 190(August 2022), 110120 (2023). https://doi.org/10.1016/j.ymssp.2023.110120
Goubej, M., Schlegel, M., Vyhlídal, T.: Robust controller design for feedback architectures with signal shapers. IFAC-PapersOnLine 53(2), 8650–8655 (2020). https://doi.org/10.1016/j.ifacol.2020.12.461
Solihin, M.I., Wahyudi, Kamal, M.A.S., Legowo, A.: Optimal PID controller tuning of automatic gantry crane using PSO algorithm. In: Proceeding 5th Int. Symp. Mechatronics its Appl. ISMA 2008, pp. 25–29 (2008). https://doi.org/10.1109/ISMA.2008.4648804
Ramli, L., Mohamed, Z., Jaafar, H.I.: A neural network-based input shaping for swing suppression of an overhead crane under payload hoisting and mass variations. Mech. Syst. Signal Process. 107(March), 484–501 (2018). https://doi.org/10.1016/j.ymssp.2018.01.029
Piedrafita, R., Comín, D., Beltrán, J.R.: Simulink® implementation and industrial test of Input Shaping techniques. Control. Eng. Pract. 79(June), 1–21 (2018). https://doi.org/10.1016/j.conengprac.2018.06.021
Alhassan, A., Mohamed, Z., Abdullahi, A.M., Bature, A.A., Haruna, A., Tahir, N.M.: Input shaping techniques for sway control of a rotary crane system. J. Teknol. 80(1), 61–69 (2018). https://doi.org/10.11113/jt.v80.10297
Richiedei, D.: Adaptive shaper-based filters for fast dynamic filtering of load cell measurements. Mech. Syst. Signal Process. 167(PA), 108541 (2022). https://doi.org/10.1016/j.ymssp.2021.108541
Acknowledgement
The authors gratefully acknowledge the Malaysian Education Ministry for the financial support it provided via the Fundamental Grant Research Scheme (FRGS/1/2020/TK0/ USIM/02/2).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Awi, A.A.M., Zawawi, S.S.N.N., Ramli, L., Lazim, I.M. (2024). Robust Input Shaping for Swing Control of an Overhead Crane. In: Hassan, F., Sunar, N., Mohd Basri, M.A., Mahmud, M.S.A., Ishak, M.H.I., Mohamed Ali, M.S. (eds) Methods and Applications for Modeling and Simulation of Complex Systems. AsiaSim 2023. Communications in Computer and Information Science, vol 1912. Springer, Singapore. https://doi.org/10.1007/978-981-99-7243-2_15
Download citation
DOI: https://doi.org/10.1007/978-981-99-7243-2_15
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-7242-5
Online ISBN: 978-981-99-7243-2
eBook Packages: Computer ScienceComputer Science (R0)