Skip to main content

Optimal Control of Double Pendulum Crane Using FOPID and Genetic Algorithm

  • Conference paper
  • First Online:
Methods and Applications for Modeling and Simulation of Complex Systems (AsiaSim 2023)

Abstract

Gantry cranes are commonly utilized to transfer huge loads in construction projects as well as essential sectors such as petrochemical and nuclear power. The objective of their operation is to achieve high levels of precision in trolley positioning while simultaneously reducing the amplitudes of sway oscillations. The goal of control approaches is to achieve optimum operational efficiency by maintaining accurate trolley placement while simultaneously meeting safety requirements by reducing sway-induced oscillatory oscillations. To satisfy control objective this paper considered the design of fractional order PID (FOPID) with help of genetic algorithm to compute controller parameters using MATLAB Software. Simulation results showed the controller performance is better than classic PID and also it was capable of providing good response for different payload masses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong, K.S., Shah, U.H.: Dynamics and Control of Industrial Cranes. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-5770-1

    Book  Google Scholar 

  2. Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes: a review. J. Vib. Control 9(7), 863–908 (2003)

    Article  Google Scholar 

  3. Ramli, L., Mohamed, Z., Abdullahi, A.M., Jaafar, H.I., Lazim, I.M.: Control strategies for crane systems: a comprehensive review. Mech. Syst. Signal Process. 95, 1–23 (2017)

    Article  Google Scholar 

  4. Singhose, W., Porter, L., Kenison, M., Kriikku, E.: Effects of hoisting on the input shaping control of gantry cranes. Control. Eng. Pract. 8(10), 1159–1165 (2000)

    Article  Google Scholar 

  5. Huang, J., Liang, Z., Zang, Q.: Dynamics and swing control of double-pendulum bridge cranes with distributed-mass beams. Mech. Syst. Signal Process. 54, 357–366 (2015)

    Article  Google Scholar 

  6. Chen, Z.M., Meng, W.J., Zhao, M.H., Zhang, J.G.: Hybrid robust control for gantry crane system. Appl. Mech. Mater. 29, 2082–2088 (2010)

    Article  Google Scholar 

  7. Sun, N., Fang, Y., Chen, H.: Adaptive control of underactuated crane systems subject to bridge length limitation and parametric uncertainties. In: Proceedings of the 33rd Chinese Control Conference, pp. 3568–3573. IEEE (2014)

    Google Scholar 

  8. Adeli, M., Zarabadipour, H., Zarabadi, S.H., Shoorehdeli, M.A.: Anti-swing control for a double-pendulum-type overhead crane via parallel distributed fuzzy LQR controller combined with genetic fuzzy rule set selection. In: 2011 IEEE International Conference on Control System, Computing and Engineering, pp. 306–311. IEEE (2011)

    Google Scholar 

  9. Solihin, M.I., Kamal, M., Legowo, A., et al.: Objective function selection of GA-based PID control optimization for automatic gantry crane. In: 2008 International Conference on Computer and Communication Engineering, pp. 883–887. IEEE (2008)

    Google Scholar 

  10. Jaafar, H., et al.: Efficient control of a nonlinear double-pendulum overhead crane with sensorless payload motion using an improved pso-tuned pid controller. J. Vib. Control 25(4), 907–921 (2019)

    Article  MathSciNet  Google Scholar 

  11. Abdel-razak, M.H., Ata, A.A., Mohamed, K.T., Haraz, E.H.: Proportional-integral-derivative controller with inlet derivative filter fine-tuning of a double-pendulum gantry crane system by a multi-objective genetic algorithm. Eng. Optim. (2019)

    Google Scholar 

  12. Tejado, I., Vinagre, B.M., Traver, J.E., Prieto-Arranz, J., Nuevo-Gallardo, C.: Back to basics: meaning of the parameters of fractional order PID controllers. Mathematics 7(6), 530 (2019)

    Article  Google Scholar 

  13. Podlubny, I.: Fractional-order systems and pi/sup/spl lambda//d/sup/spl mu//-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  Google Scholar 

  14. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)

    Google Scholar 

  15. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past, present, and future. Multimedia Tools Appl. 80, 8091–8126 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

This work is funded by the Ministry of Higher Education under FRGS, Registration Proposal No. FRGS/1/2020/ICT02/UTM/02/5 & UTM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman Wahid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elhabib, M.O., Wahid, H., Mohamed, Z., Jaafar, H.I. (2024). Optimal Control of Double Pendulum Crane Using FOPID and Genetic Algorithm. In: Hassan, F., Sunar, N., Mohd Basri, M.A., Mahmud, M.S.A., Ishak, M.H.I., Mohamed Ali, M.S. (eds) Methods and Applications for Modeling and Simulation of Complex Systems. AsiaSim 2023. Communications in Computer and Information Science, vol 1912. Springer, Singapore. https://doi.org/10.1007/978-981-99-7243-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7243-2_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7242-5

  • Online ISBN: 978-981-99-7243-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics