Skip to main content

A Privacy-Preserving Evolutionary Computation Framework for Feature Selection

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2023 (WISE 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14306))

Included in the following conference series:

  • 775 Accesses

Abstract

Feature selection is a crucial process in data science that involves selecting the most effective subset of features. Evolutionary computation (EC) is one of the most commonly-used feature selection techniques and has demonstrated good performance, which can help find the suitable feature subset based on training data and fitness information. However, in real-world scenarios, the exact fitness information and privacy-protected data cannot be directly accessed due to privacy and security issues, which leads to a great optimization challenge. To solve such privacy-preserving feature selection problems efficiently, this paper proposes a novel EC-based feature selection framework that balances data privacy and optimization efficiency, together with three contributions. First, based on the rank-based cryptographic function that returns the rank of solutions rather than the exact fitness information, this paper proposes a new fitness function to guide the EC algorithm to approach the global optimum without knowing the exact fitness information and the dataset, thereby preserving data privacy. Second, by integrating the proposed method and EC algorithms, this paper develops a new differential evolution and particle swarm optimization algorithms for efficient feature selection. Finally, experiments are conducted on public datasets, which demonstrate that the proposed method can maintain feature selection efficiency while preserving data privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. 50(6), 1–45 (2017)

    Article  Google Scholar 

  2. Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in machine learning: a new perspective. Neurocomputing 300, 70–79 (2018)

    Article  Google Scholar 

  3. Gao, M., Li, J.Y., Chen, C.H., Li, Y., Zhang, J., Zhan, Z.H.: Enhanced multi-task learning and knowledge graph-based recommender system. IEEE Trans. Knowl. Data Eng. 35(10), 10281–10294 (2023)

    Article  Google Scholar 

  4. Zhan, Z.H., Li, J.Y., Zhang, J.: Evolutionary deep learning: a survey. Neurocomputing 483, 42–58 (2022)

    Article  Google Scholar 

  5. Xiao, H., Huang, G., Xiong, G., Jiang, W., Dai, H.: A NOx emission prediction hybrid method based on boiler data feature subset selection. World Wide Web 26(4), 1811–1825 (2023). https://doi.org/10.1007/s11280-022-01107-1

    Article  Google Scholar 

  6. Li, Y., Zheng, Z., Dai, H.N., Wong, R.C.W., Xie, H.: Profit-based deep architecture with integration of reinforced data selector to enhance trend-following strategy. World Wide Web 26(4), 1685–1705 (2023). https://doi.org/10.1007/s11280-022-01112-4

    Article  Google Scholar 

  7. Mahanan, W., Chaovalitwongse, W.A., Natwichai, J.: Data privacy preservation algorithm with k-anonymity. World Wide Web 24(5), 1551–1561 (2021). https://doi.org/10.1007/s11280-021-00922-2

    Article  Google Scholar 

  8. Muhammad, T., Ahmad, A.: A joint sharing approach for online privacy preservation. World Wide Web 24(3), 895–924 (2021). https://doi.org/10.1007/s11280-021-00876-5

    Article  Google Scholar 

  9. Jia, D., Yang, G., Huang, M., Xin, J., Wang, G., Yuan, G.Y.: An efficient privacy-preserving blockchain storage method for internet of things environment. World Wide Web (2023). https://doi.org/10.1007/s11280-023-01172-0

  10. You, M., et al.: A knowledge graph empowered online learning framework for access control decision-making. World Wide Web 26(2), 827–848 (2023). https://doi.org/10.1007/s11280-022-01076-5

    Article  Google Scholar 

  11. Kong, L., et al.: LSH-aware multitype health data prediction with privacy preservation in edge environment. World Wide Web 25(5), 1793–1808 (2022). https://doi.org/10.1007/s11280-021-00941-z

    Article  Google Scholar 

  12. Ge, Y.-F., Orlowska, M., Cao, J., Wang, H., Zhang, Y.: MDDE: multitasking distributed differential evolution for privacy-preserving database fragmentation. VLDB J. 31(5), 957–975 (2022). https://doi.org/10.1007/s00778-021-00718-w

    Article  Google Scholar 

  13. Vimalachandran, P., Liu, H., Lin, Y., Ji, K., Wang, H., Zhang, Y.: Improving accessibility of the Australian My Health Records while preserving privacy and security of the system. Health Inf. Sci. Syst. 8(1), 1–9 (2020). https://doi.org/10.1007/s13755-020-00126-4

    Article  Google Scholar 

  14. Braun, T., Fung, B.C.M., Iqbal, F., Shah, B.: Security and privacy challenges in smart cities. Sustain. Cities Soc. 39, 499–507 (2018)

    Article  Google Scholar 

  15. Santana, L.E.A.S., Canuto, A.M.P.: Filter-based optimization techniques for selection of feature subsets in ensemble systems. Expert Syst. Appl. 41(4, Part 2), 1622–1631 (2014)

    Google Scholar 

  16. Yang, J.Q., Chen, C.H., Li, J.Y., Liu, D., Li, T., Zhan, Z.H.: Compressed-encoding particle swarm optimization with fuzzy learning for large-scale feature selection. Symmetry 14(6), 1142 (2022)

    Article  Google Scholar 

  17. Liu, H., Zhou, M., Liu, Q.: An embedded feature selection method for imbalanced data classification. IEEE/CAA J. Autom. Sin. 6(3), 703–715 (2019)

    Article  Google Scholar 

  18. Siddiqi, M.A., Pak, W.: Optimizing filter-based feature selection method flow for intrusion detection system. Electronics 9(12), 1–18 (2020)

    Article  Google Scholar 

  19. Zhan, Z.H., Wang, Z.J., Jin, H., Zhang, J.: Adaptive distributed differential evolution. IEEE Trans. Cybern. 50(11), 4633–4647 (2020)

    Article  Google Scholar 

  20. Yang, J.Q., et al.: Bi-directional feature fixation-based particle swarm optimization for large-scale feature selection. IEEE Trans. Big Data 9(3), 1004–1017 (2023)

    Article  Google Scholar 

  21. Zhang, X., et al.: Graph-based deep decomposition for overlapping large-scale optimization problems. IEEE Trans. Syst. Man Cybern. Syst. 53(4), 2374–2386 (2023)

    Article  Google Scholar 

  22. Li, J.Y., Zhan, Z.H., Tan, K.C., Zhang, J.: Dual differential grouping: a more general decomposition method for large-scale optimization. IEEE Trans. Cybern. 53(6), 3624–3638 (2023)

    Article  Google Scholar 

  23. Du, K.J., Li, J.Y., Wang, H., Zhang, J.: Multi-objective multi-criteria evolutionary algorithm for multi-objective multi-task optimization. Complex Intell. Syst. 9(2), 1211–1228 (2023). https://doi.org/10.1007/s40747-022-00650-8

    Article  Google Scholar 

  24. Yang, Q., et al.: A distributed swarm optimizer with adaptive communication for large-scale optimization. IEEE Trans. Cybern. 50(7), 3393–3408 (2020)

    Article  Google Scholar 

  25. Ge, Y.F., et al.: DSGA: a distributed segment-based genetic algorithm for multi-objective outsourced database partitioning. Inf. Sci. 612, 864–886 (2022)

    Article  Google Scholar 

  26. Yang, Q.T., Zhan, Z.H., Kwong, S., Zhang, J.: Multiple populations for multiple objectives framework with bias sorting for many-objective optimization. IEEE Trans. Evol. Comput. 27(5), 1340–1354 (2023)

    Article  Google Scholar 

  27. Jiang, Y., Zhan, Z.H., Tan, K.C., Zhang, J.: Block-level knowledge transfer for evolutionary multitask optimization. IEEE Trans. Cybern. (2023). Early Access. https://doi.org/10.1109/TCYB.2023.3273625

  28. Li, J.Y., et al.: A multipopulation multiobjective ant colony system considering travel and prevention costs for vehicle routing in COVID-19-like epidemics. IEEE Trans. Intell. Transp. Syst. 23(12), 25062–25076 (2022)

    Article  Google Scholar 

  29. Li, J.Y., Zhan, Z.H., Wang, C., Jin, H., Zhang, J.: Boosting data-driven evolutionary algorithm with localized data generation. IEEE Trans. Evol. Comput. 24(5), 923–937 (2020)

    Article  Google Scholar 

  30. Li, J.Y., Zhan, Z.H., Wang, H., Zhang, J.: Data-driven evolutionary algorithm with perturbation-based ensemble surrogates. IEEE Trans. Cybern. 51(8), 3925–3937 (2021)

    Article  Google Scholar 

  31. Li, J.Y., Zhan, Z.H., Zhang, J.: Evolutionary computation for expensive optimization: a survey. Mach. Intell. Res. 19(1), 3–23 (2022). https://doi.org/10.1007/s11633-022-1317-4

    Article  Google Scholar 

  32. Wu, S.H., Zhan, Z.H., Zhang, J.: SAFE: scale-adaptive fitness evaluation method for expensive optimization problems. IEEE Trans. Evol. Comput. 25(3), 478–491 (2021)

    Article  Google Scholar 

  33. Wang, Y.Q., Li, J.Y., Chen, C.H., Zhang, J., Zhan, Z.H.: Scale adaptive fitness evaluation-based particle swarm optimization for hyperparameter and architecture optimization in neural networks and deep learning. CAAI Trans. Intell. Technol. 8(3), 849–862 (2022)

    Article  Google Scholar 

  34. Wei, F.F., et al.: A classifier-assisted level-based learning swarm optimizer for expensive optimization. IEEE Trans. Evol. Comput. 25(2), 219–233 (2021)

    Article  Google Scholar 

  35. Li, J.Y., Zhan, Z.H., Tan, K.C., Zhang, J.: A meta-knowledge transfer-based differential evolution for multitask optimization. IEEE Trans. Evol. Comput. 26(4), 719–734 (2022)

    Article  Google Scholar 

  36. Wu, S.H., Zhan, Z.H., Tan, K.C., Zhang, J.: Transferable adaptive differential evolution for many-task optimization. IEEE Trans. Cybern. (2023). Early Access. https://doi.org/10.1109/TCYB.2023.3234969

  37. Zhan, Z.H., Li, J.Y., Kwong, S., Zhang, J.: Learning-aided evolution for optimization. IEEE Trans. Evol. Comput. (2022). Early Access. https://doi.org/10.1109/TEVC.2022.3232776

  38. Zhan, Z.H., et al.: Matrix-based evolutionary computation. IEEE Trans. Emerg. Top. Comput. Intell. 6(2), 315–328 (2022)

    Article  Google Scholar 

  39. Kumar, D., Baranwal, G., Shankar, Y., Vidyarthi, D.P.: A survey on nature-inspired techniques for computation offloading and service placement in emerging edge technologies. World Wide Web 25(5), 2049–2107 (2022). https://doi.org/10.1007/s11280-022-01053-y

    Article  Google Scholar 

  40. Yang, Q., Chen, W.N., Li, Y., Chen, C.L.P., Xu, X.M., Zhang, J.: Multimodal estimation of distribution algorithms. IEEE Trans. Cybern. 47(3), 636–650 (2017)

    Article  Google Scholar 

  41. Zhou, H., Song, M., Pedrycz, W.: A comparative study of improved GA and PSO in solving multiple traveling salesmen problem. Appl. Soft Comput. 64, 564–580 (2018)

    Article  Google Scholar 

  42. Zhang, X., Zhan, Z.H., Fang, W., Qian, P., Zhang, J.: Multipopulation ant colony system with knowledge-based local searches for multiobjective supply chain configuration. IEEE Trans. Evol. Comput. 26(3), 512–526 (2022)

    Article  Google Scholar 

  43. Wang, C., et al.: A novel evolutionary algorithm with column and sub-block local search for sudoku puzzles. IEEE Trans. Games (2023). Early Access. https://doi.org/10.1109/TG.2023.3236490

  44. Guo, F., Tang, B., Tang, M.: Joint optimization of delay and cost for microservice composition in mobile edge computing. World Wide Web 25(5), 2019–2047 (2022). https://doi.org/10.1007/s11280-022-01017-2

    Article  Google Scholar 

  45. Mirjalili, S., Song Dong, J., Sadiq, A.S., Faris, H.: Genetic algorithm: theory, literature review, and application in image reconstruction. In: Mirjalili, S., Song Dong, J., Lewis, A. (eds.) Nature-Inspired Optimizers. SCI, vol. 811, pp. 69–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-12127-3_5

    Chapter  Google Scholar 

  46. Wang, Z.J., Jian, J.R., Zhan, Z.H., Li, Y., Kwong, S., Zhang, J.: Gene targeting differential evolution: a simple and efficient method for large-scale optimization. IEEE Trans. Evol. Comput. 27(4), 964–979 (2023)

    Article  Google Scholar 

  47. Li, J.Y., Du, K.J., Zhan, Z.H., Wang, H., Zhang, J.: Distributed differential evolution with adaptive resource allocation. IEEE Trans. Cybern. 53(5), 2791–2804 (2023)

    Article  Google Scholar 

  48. Zhang, J., et al.: Proximity ranking-based multimodal differential evolution. Swarm Evol. Comput. 78, 101277 (2023)

    Article  Google Scholar 

  49. Wang, D., Tan, D., Liu, L.: Particle swarm optimization algorithm: an overview. Soft. Comput. 22(2), 387–408 (2018). https://doi.org/10.1007/s00500-016-2474-6

    Article  Google Scholar 

  50. Yang, Q., Chen, W.N., Deng, J.D., Li, Y., Gu, T., Zhang, J.: A level-based learning swarm optimizer for large-scale optimization. IEEE Trans. Evol. Comput. 22(4), 578–594 (2018)

    Article  Google Scholar 

  51. Yang, Q., et al.: An adaptive stochastic dominant learning swarm optimizer for high-dimensional optimization. IEEE Trans. Cybern. 52(3), 1960–1976 (2022)

    Article  MathSciNet  Google Scholar 

  52. Li, J.Y., et al.: Generation-level parallelism for evolutionary computation: a pipeline-based parallel particle swarm optimization. IEEE Trans. Cybern. 51(10), 4848–4859 (2021)

    Article  Google Scholar 

  53. Guo, Y., Li, J.Y., Zhan, Z.H.: Efficient hyperparameter optimization for convolution neural networks in deep learning: a distributed particle swarm optimization approach. Cybern. Syst. 52(1), 36–57 (2020)

    Article  Google Scholar 

  54. Bhandari, S., Pathak, S., Jain, S.A.: A literature review of early-stage diabetic retinopathy detection using deep learning and evolutionary computing techniques. Arch. Comput. Methods Eng. 30(2), 799–810 (2023). https://doi.org/10.1007/s11831-022-09816-6

    Article  Google Scholar 

  55. Osia, S.A., Taheri, A., Shamsabadi, A.S., Katevas, K., Haddadi, H., Rabiee, H.R.: Deep private-feature extraction. IEEE Trans. Knowl. Data Eng. 32(1), 54–66 (2020)

    Article  Google Scholar 

  56. Xu, C., Ren, J., Zhang, D., Zhang, Y.: Distilling at the edge: a local differential privacy obfuscation framework for IoT data analytics. IEEE Commun. Mag. 56(8), 20–25 (2018)

    Article  Google Scholar 

  57. Gao, C., Yu, J.: SecureRC: a system for privacy-preserving relation classification using secure multi-party computation. Comput. Secur. 128, 103142 (2023)

    Article  Google Scholar 

  58. Yang, H., Huang, Y., Yong, Yu., Yao, M., Zhang, X.: Privacy-preserving extraction of hog features based on integer vector homomorphic encryption. In: Liu, J.K., Samarati, P. (eds.) Information Security Practice and Experience, pp. 102–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72359-4_6

    Chapter  Google Scholar 

  59. Zhan, Z.H., Wu, S.H., Zhang, J.: A new evolutionary computation framework for privacy-preserving optimization. In: International Conference on Advanced Computational Intelligence, pp. 220–226 (2021)

    Google Scholar 

  60. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016)

    Article  Google Scholar 

  61. Tao, J., Zhang, R.: Intelligent feature selection using ga and neural network optimization for real-time driving pattern recognition. IEEE Trans. Intell. Transp. Syst. 23(8), 12665–12674 (2022)

    Article  Google Scholar 

  62. Zhou, T., Lu, H.L., Wang, W.W., Yong, X.: GA-SVM based feature selection and parameter optimization in hospitalization expense modeling. Appl. Soft Comput. 75, 323–332 (2019)

    Article  Google Scholar 

  63. Meenachi, L., Ramakrishnan, S.: Differential evolution and ACO based global optimal feature selection with fuzzy rough set for cancer data classification. Soft. Comput. 24(24), 18463–18475 (2020)

    Article  Google Scholar 

  64. Bhuyan, H.K., Kamila, N.K.: Privacy preserving sub-feature selection in distributed data mining. Appl. Soft Comput. 36, 552–569 (2015)

    Article  Google Scholar 

  65. Usynin, D., et al.: Adversarial interference and its mitigations in privacy-preserving collaborative machine learning. Nat. Mach. Intell. 3(9), 749–758 (2021)

    Article  Google Scholar 

  66. Iezzi, M.: Practical privacy-preserving data science with homomorphic encryption: an overview. In: IEEE International Conference on Big Data, pp. 3979–3988 (2020)

    Google Scholar 

  67. Vakilinia, I., Tosh, D.K., Sengupta, S.: Privacy-preserving cybersecurity information exchange mechanism. In: International Symposium on Performance Evaluation of Computer and Telecommunication Systems, pp. 1–7 (2017)

    Google Scholar 

  68. UCI Machine Learning Repository: Dry Bean Dataset. https://doi.org/10.24432/C50S4B. Accessed 19 June 2023

  69. UCI Machine Learning Repository: Image Segmentation Dataset. https://doi.org/10.24432/C5GP4N. Accessed 19 June 2023

  70. Hofmann, H.: Statlog (German Credit Data). https://doi.org/10.24432/C5NC77. Accessed 19 June 2023

  71. Ilter, N.A.G., Dermatology. https://doi.org/10.24432/C5FK5P. Accessed 19 June 2023

  72. Sigillito, V., Wing, S., Hutton, L., Baker, K.: Ionosphere. https://doi.org/10.24432/C5W01B. Accessed 19 June 2023

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 62176094, and in part by the National Research Foundation of Korea under Grant NRF-2022H1D3A2A01093478 and Grant NRF-2020R1C1C1013806.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Yu Li or Zhi-Hui Zhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, B., Li, JY., Liu, XF., Yang, Q., Zhan, ZH., Zhang, J. (2023). A Privacy-Preserving Evolutionary Computation Framework for Feature Selection. In: Zhang, F., Wang, H., Barhamgi, M., Chen, L., Zhou, R. (eds) Web Information Systems Engineering – WISE 2023. WISE 2023. Lecture Notes in Computer Science, vol 14306. Springer, Singapore. https://doi.org/10.1007/978-981-99-7254-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7254-8_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7253-1

  • Online ISBN: 978-981-99-7254-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics