Skip to main content

An Effective Dynamic Cost-Sensitive Weighting Based Anomaly Multi-classification Model for Imbalanced Multivariate Time Series

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2023 (WISE 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14306))

Included in the following conference series:

  • 1456 Accesses

Abstract

Addressing imbalanced multivariate time series classification remains challenging due to skewed class distribution, resulting in suboptimal minority class classification. High dimensionality and temporal dependencies further complicate the task. We propose a novel model with dynamic cost-sensitive weighting to handle this. Our model employs multi-head self-attention and a transformer structure to capture dependencies. The proposed dynamic cost-sensitive weighting function enhances imbalanced multivariate time series handling with anomalies across classes. We comprehensively evaluated our model using KPI-monitored multivariate time series data via a microservice benchmark, comparing against baselines. Results underscore our model’s efficacy, especially in cloud computing and deep learning contexts.

This research was supported by the Science and Technology Program of Sichuan Province under Grant No. 2020JDRC0067, No. 2023JDRC0087, and No. 2020YFG0326, and the Talent Program of Xihua University under Grant No. Z202047 and No. Z222001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/microservices-demo/microservices-demo.

References

  1. Chen, J., Chen, P., Niu, X., Wu, Z., Xiong, L., Shi, C.: Task offloading in hybrid-decision-based multi-cloud computing network: a cooperative multi-agent deep reinforcement learning. J. Cloud Comput. 11(1), 1–17 (2022)

    Article  Google Scholar 

  2. Chen, P.: Effectively detecting operational anomalies in large-scale IoT data infrastructures by using a GAN-based predictive model. Comput. J. 65(11), 2909–2925 (2022)

    Article  Google Scholar 

  3. Chen, P., Xia, Y., Pang, S., Li, J.: A probabilistic model for performance analysis of cloud infrastructures. Concurr. Comput.: Pract. Exper. 27(17), 4784–4796 (2015)

    Article  Google Scholar 

  4. Du, W., Côté, D., Liu, Y.: SAITS: self-attention-based imputation for time series. Expert Syst. Appl. 219, 119619 (2023)

    Article  Google Scholar 

  5. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’01, pp. 973–978. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  6. Gao, C., Zhang, N., Li, Y., Bian, F., Wan, H.: Self-attention-based time-variant neural networks for multi-step time series forecasting. Neural Comput. Appl. 34(11), 8737–8754 (2022)

    Article  Google Scholar 

  7. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  8. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Khan, S.H., Hayat, M., Bennamoun, M., Sohel, F.A., Togneri, R.: Cost-sensitive learning of deep feature representations from imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3573–3587 (2017)

    Google Scholar 

  10. Liu, H., et al.: Robustness challenges in reinforcement learning based time-critical cloud resource scheduling: a meta-learning based solution. Future Gener. Comput. Syst. 146, 18–33 (2023)

    Article  Google Scholar 

  11. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. (CSUR) 54(2), 1–38 (2021)

    Article  Google Scholar 

  12. Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 353–362 (2019)

    Google Scholar 

  13. Roychoudhury, S., Ghalwash, M., Obradovic, Z.: Cost sensitive time-series classification. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 495–511. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_30

    Chapter  Google Scholar 

  14. Ruiz, A.P., Flynn, M., Large, J., Middlehurst, M., Bagnall, A.: The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 35(2), 401–449 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sgueglia, A., Di Sorbo, A., Visaggio, C.A., Canfora, G.: A systematic literature review of IoT time series anomaly detection solutions. Future Gener. Comput. Syst. 134, 170–186 (2022)

    Article  Google Scholar 

  16. Song, Y., Xin, R., Chen, P., Zhang, R., Chen, J., Zhao, Z.: Identifying performance anomalies in fluctuating cloud environments: a robust correlative-GNN-based explainable approach. Futur. Gener. Comput. Syst. 145, 77–86 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qi, S., Chen, J., Chen, P., Li, J., Shan, W., Wen, P. (2023). An Effective Dynamic Cost-Sensitive Weighting Based Anomaly Multi-classification Model for Imbalanced Multivariate Time Series. In: Zhang, F., Wang, H., Barhamgi, M., Chen, L., Zhou, R. (eds) Web Information Systems Engineering – WISE 2023. WISE 2023. Lecture Notes in Computer Science, vol 14306. Springer, Singapore. https://doi.org/10.1007/978-981-99-7254-8_60

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7254-8_60

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7253-1

  • Online ISBN: 978-981-99-7254-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics