Skip to main content

Data Mining in Establishing the Indirect Reference Intervals of Biochemical and Haematological Assays in the Paediatric Population: A Review

  • Conference paper
  • First Online:
Advances in Visual Informatics (IVIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14322))

Included in the following conference series:

  • 651 Accesses

Abstract

Reference intervals (RIs) are fundamental values accompanying medical laboratory results that allow interpretation by medical practitioners, thus influencing patient management. Traditionally, RIs are established by recruiting 120 healthy reference individuals and applying statistical analysis to the results. This method is challenging due to the technical and ethical issues involved. Therefore, many laboratories either adapt RIs provided by the manufacturers of their analytical platforms or the results of RI studies done in other countries. The advent of data mining technology has allowed an alternative method, the indirect RIs (IRIs) approach, which applies appropriate statistical techniques to patient data stored in the laboratory electronic medical records to establish the IRIs. This review briefly highlights the historical aspect of IRI determination, provides a general outline of the steps involved and reviews publications that have used data mining to establish the paediatric IRI over the past ten years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Coenen, F.: Data mining: past, present and future. Knowl. Eng. Rev. 26(1), 25–29 (2011)

    Article  Google Scholar 

  2. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: Advances in Knowledge Discovery and Data Mining, Editor. AAAI Press/The MIT Press, Menlo Park (1996)

    Google Scholar 

  3. Hoq, M., et al.: Paediatric reference intervals: current status, gaps, challenges and future considerations. Clin. Biochem. Rev. 41(2), 43–52 (2020)

    Google Scholar 

  4. Katayev, A., Balciza, C., Seccombe, D.W.: Establishing reference intervals for clinical laboratory test results: is there a better way? Am. J. Clin. Pathol. 133(2), 180–186 (2010)

    Article  Google Scholar 

  5. Ceriotti, F.: Establishing pediatric reference intervals: a challenging task. Clin. Chem. 58(5), 808–810 (2012)

    Article  Google Scholar 

  6. Mat Nayan, N.: Model for monitoring chronic disease in MHealth applications: a case of Asian country. IRAJ (2020)

    Google Scholar 

  7. Tahmasebi, H., et al.: Pediatric reference intervals for biochemical markers: gaps and challenges, recent national initiatives and future perspectives. EJIFCC 28(1), 43–63 (2017)

    MathSciNet  Google Scholar 

  8. Lyle, A.N., et al.: Current state of pediatric reference intervals and the importance of correctly describing the biochemistry of child development: a review. JAMA Pediatr. 176(7), 699–714 (2022)

    Article  Google Scholar 

  9. Ibrahim, R., et al.: Estimation of cost of diagnostic laboratory services using activity based costing (ABC) for implementation of Malaysia diagnosis related group (MY-DRG®) in a teaching hospital. Malays. J. Publ. Health Med. 17, 1–8 (2017)

    Google Scholar 

  10. Jones, G.R.D., et al.: Indirect methods for reference interval determination – review and recommendations. Clin. Chem. Lab. Med. (CCLM) 57(1), 20–29 (2019)

    Article  Google Scholar 

  11. Zierk, J., et al.: Indirect determination of hematology reference intervals in adult patients on Beckman Coulter UniCell DxH 800 and Abbott CELL-DYN Sapphire devices. Clin. Chem. Lab. Med. 57(5), 730–739 (2019)

    Article  Google Scholar 

  12. Yang, D., Su, Z., Zhao, M.: Big data and reference intervals. Clin. Chim. Acta 527, 23–32 (2022)

    Article  Google Scholar 

  13. Hoffmann, G., Lichtinghagen, R., Wosniok, W.: Simple estimation of reference intervals from routine laboratory data. Lab. Medizin 39(6) (2016)

    Google Scholar 

  14. Bhattacharya, C.G.: A simple method of resolution of a distribution into gaussian components. Biometrics 23(1), 115–135 (1967)

    Article  Google Scholar 

  15. Horn, P.S., Pesce, A.J., Copeland, B.E.: A robust approach to reference interval estimation and evaluation. Clin. Chem. 44(3), 622–631 (1998)

    Article  Google Scholar 

  16. Beasley, C.M., Jr., et al.: Adaptation of the robust method to large distributions of reference values: program modifications and comparison of alternative computational methods. J. Biopharm. Stat. 29(3), 516–528 (2019)

    Article  Google Scholar 

  17. Grossi, E., et al.: The REALAB project: a new method for the formulation of reference intervals based on current data. Clin. Chem. 51(7), 1232–1240 (2005)

    Article  Google Scholar 

  18. Arzideh, F., et al.: A plea for intra-laboratory reference limits. part 2. a bimodal retrospective concept for determining reference limits from intra-laboratory databases demonstrated by catalytic activity concentrations of enzymes. Clin. Chem. Lab. Med. 45(8), 1043–1057 (2007)

    Article  Google Scholar 

  19. Farrell, C.L., Nguyen, L., Carter, A.C.: Data mining for age-related TSH reference intervals in adulthood. Clin. Chem. Lab. Med. 55(10), e213–e215 (2017)

    Article  Google Scholar 

  20. Lo Sasso, B., et al.: Reference interval by the indirect approach of serum thyrotropin (TSH) in a Mediterranean adult population and the association with age and gender. Clin. Chem. Lab. Med. 57(10), 1587–1594 (2019)

    Article  Google Scholar 

  21. Mrosewski, I., et al.: Indirectly determined hematology reference intervals for pediatric patients in Berlin and Brandenburg. Clin. Chem. Lab. Med. 60(3), 408–432 (2021)

    Article  Google Scholar 

  22. Zierk, J., et al.: Age- and sex-specific dynamics in 22 hematologic and biochemical analytes from birth to adolescence. Clin. Chem. 61(7), 964–973 (2015)

    Article  Google Scholar 

  23. Zierk, J., Metzler, M., Rauh, M.: Data mining of pediatric reference intervals. J. Lab. Med. 45(6), 311–317 (2021)

    Article  Google Scholar 

  24. Higgins, V., Adeli, K.: Advances in pediatric reference intervals: from discrete to continuous. J. Lab. Prec. Med. 3(1), 77–82 (2018)

    Google Scholar 

  25. Omosule, C.L., et al.: Pediatric ionised calcium reference intervals from archived radiometer data. Clin. Biochem. 104, 13–18 (2022)

    Article  Google Scholar 

  26. Gallo, S., et al.: Redefining normal bone and mineral biochemistry reference intervals for healthy infants in Canada. Clin. Biochem. 47(15), 27–32 (2014)

    Article  Google Scholar 

  27. Gennai, I., et al.: Age- and sex-matched reference curves for serum collagen type I C-telopeptides and bone ALP in children and adolescents: an alternative multivariate statistical analysis approach. Clin. Biochem. 49(10–11), 802–807 (2016)

    Article  Google Scholar 

  28. Monneret, D., et al.: Reference percentiles for paired arterial and venous umbilical cord blood gases: An indirect nonparametric approach. Clin. Biochem. 67, 40–47 (2019)

    Article  Google Scholar 

  29. Ahmed, S., Zierk, J., Khan, A.H.: Establishment of reference intervals for Alkaline phosphatase in Pakistani children using a data mining approach. Lab. Med. 51(5), 484–490 (2020)

    Article  Google Scholar 

  30. Ahmed, S., et al.: Indirect determination of serum creatinine reference intervals in a Pakistani pediatric population using big data analytics. World J. Clin. Pediatr. 10(4), 72–78 (2021)

    Article  MathSciNet  Google Scholar 

  31. Ammer, T., et al.: RefineR: a novel algorithm for reference interval estimation from real-world data. Sci. Rep. 11(1), 16023 (2021)

    Article  Google Scholar 

  32. Ha, F., et al.: The reference intervals of whole blood copper, zinc, calcium, magnesium, and iron in infants under 1 year old. Biol. Trace Elem. Res. 200(1), 1–12 (2022)

    Article  Google Scholar 

  33. Dathan-Stumpf, A., et al.: Pediatric reference data of serum lipids and prevalence of dyslipidemia: results from a population-based cohort in Germany. Clin. Biochem. 49(10–11), 740–749 (2016)

    Article  Google Scholar 

  34. Grecu, D.S., et al.: Quality in post-analytical phase: indirect reference intervals for neonates erythrocyte parameters. Clin. Biochem. 46(7–8), 617–621 (2013)

    Article  Google Scholar 

  35. Zierk, J., et al.: Indirect determination of pediatric blood count reference intervals. Clin. Chem. Lab. Med. 51(4), 863–872 (2013)

    Article  Google Scholar 

  36. Weidhofer, C., et al.: Dynamic reference intervals for coagulation parameters from infancy to adolescence. Clin. Chim. Acta 482, 124–135 (2018)

    Article  Google Scholar 

  37. Zierk, J., et al.: Next-generation reference intervals for pediatric hematology. Clin. Chem. Lab. Med. 57(10), 1595–1607 (2019)

    Article  Google Scholar 

  38. Zeljkovic, A., et al.: Indirect reference intervals for haematological parameters in capillary blood of pre-school children. Biochemia Medica 31(1), 134–142 (2021)

    Article  Google Scholar 

  39. Bracho, F.J.: Reference intervals of automated reticulocyte count and immature reticulocyte fraction in a pediatric population. Int. J. Lab. Hematol. 44(3), 461–467 (2022)

    Article  Google Scholar 

  40. Shaw, J.L.V., et al.: Validity of establishing pediatric reference intervals based on hospital patient data: a comparison of the modified Hoffmann approach to CALIPER reference intervals obtained in healthy children. J. Clin. Biochem. 47(3), 166–172 (2014)

    Article  Google Scholar 

  41. Ozarda, Y., et al.: Comparison of reference intervals derived by direct and indirect methods based on compatible datasets obtained in Turkey. Clinica Chimica Acta: Int. J. Clin. Chem. 520, 186–195 (2021)

    Article  Google Scholar 

  42. Haeckel, R.: Indirect approaches to estimate reference intervals. J. Lab. Med. 45(2), 31–33 (2021)

    Article  Google Scholar 

  43. Chaler, E.A., et al.: Age-specific thyroid hormone and thyrotropin reference intervals for a pediatric and adolescent population. Clin. Chem. Lab. Med. 50(5), 885–890 (2012)

    Article  Google Scholar 

  44. Elmlinger, M.W., et al.: Reference intervals from birth to adulthood for serum thyroxine (T4), triiodothyronine (T3), free T3, free T4, thyroxine binding globulin (TBG) and thyrotropin (TSH). Clin. Chem. Lab. Med. 39(10), 973–979 (2001)

    Article  Google Scholar 

  45. Strich, D., Edri, S., Gillis, D.: Current normal values for TSH and FT3 in children are too low: evidence from over 11,000 samples. J. Pediatr. Endocrinol. Metab. 25(3–4), 245–248 (2012)

    Google Scholar 

  46. Aitkenhead, H., Heales, S.J.: Establishment of paediatric age-related reference intervals for serum prolactin to aid in the diagnosis of neurometabolic conditions affecting dopamine metabolism. Ann. Clin. Biochem. 50(2), 156–158 (2013)

    Article  Google Scholar 

  47. Cook, J., et al.: Pediatric reference ranges for prolactin. Clin. Chem. 38(6), 959 (1992)

    Google Scholar 

  48. Roizen, J.D., et al.: Determination of reference intervals for serum total calcium in the vitamin d-Replete pediatric population. J. Clin. Endocrinol. Metab. 98(12), E1946–E1950 (2013)

    Article  Google Scholar 

  49. Imamoglu, E.Y., et al.: Nomogram-based evaluation of thyroid function in appropriate-for-gestational-age neonates in intensive care unit. J. Perinatol. 35(3), 204–207 (2015)

    Article  Google Scholar 

  50. Søeby, K., et al.: Mining of hospital laboratory information systems: a model study defining age- and gender-specific reference intervals and trajectories for plasma creatinine in a pediatric population. Clin. Chem. Lab. Med. 53(10), 1621–1630 (2015)

    Article  Google Scholar 

  51. Den Elzen, W.P.J., et al.: NUMBER: Standardised reference intervals in the Netherlands using a ‘big data’ approach. Clin. Chem. Lab. Med. 57(1), 42–56 (2018)

    Article  Google Scholar 

  52. Zierk, J., et al.: High-resolution pediatric reference intervals for 15 biochemical analytes described using fractional polynomials. Clin. Chem. Lab. Med. 59(7), 1267–1278 (2021)

    Article  Google Scholar 

  53. ÖZYÜREK, E., et al.: Complete blood parameters for healthy, SGA, full-term newborns. Clin. Lab. Haematol. 28(2), 97–104 (2006)

    Google Scholar 

  54. Grecu, D.S., Paulescu, E.: Quality assurance in the laboratory testing process: indirect estimation of the reference intervals for platelet parameters in neonates. Clin. Biochem. 47(15), 33–37 (2014)

    Article  Google Scholar 

  55. Wasiluk, A., et al.: Platelet indices in SGA newborns. Adv. Med. Sci. 56(2), 361–365 (2011)

    Article  Google Scholar 

  56. Toulon, P., et al.: Age dependency for coagulation parameters in paediatric populations. Results of a multicentre study aimed at defining the age-specific reference ranges. Thromb. Haemost. 116(1), 9–16 (2016)

    Google Scholar 

  57. Zierk, J., et al.: Indirect determination of hematology reference intervals in adult patients on Beckman Coulter UniCell DxH 800 and Abbott CELL-DYN Sapphire devices. Clin. Chem. Lab. Med. (CCLM) 57(5), 730–739 (2019)

    Article  Google Scholar 

  58. Herklotz, R., et al.: Metaanalysis of reference values in hematology. Ther. Umsch. 63(1), 5–24 (2006)

    Article  Google Scholar 

  59. Fleming, J.K., et al.: Development of nation-wide reference intervals using an indirect method and harmonised assays. Clin. Biochem. 99, 20–59 (2022)

    Article  Google Scholar 

  60. Sung, J.Y., et al.: Establishment of pediatric reference intervals for routine laboratory tests in korean population: a retrospective multicenter analysis. Ann. Lab. Med. 41(2), 155 (2021)

    Article  MathSciNet  Google Scholar 

  61. Griffiths, J.K., et al.: Centile charts II: alternative nonparametric approach for establishing time-specific reference centiles and assessment of the sample size required. Clin. Chem. 50(5), 907–914 (2004)

    Article  Google Scholar 

  62. Koduah, M., Iles, T.C., Nix, B.J.: Centile charts I: new method of assessment for univariate reference intervals. Clin. Chem. 50(5), 901–906 (2004)

    Article  Google Scholar 

  63. Loh, T.P., et al.: Development of paediatric biochemistry centile charts as a complement to laboratory reference intervals. Pathology 46(4), 336–343 (2014)

    Article  Google Scholar 

  64. Arzideh, F., et al.: An improved indirect approach for determining reference limits from intra-laboratory data bases exemplified by concentrations of electrolytes/Ein verbesserter indirekter Ansatz zur Bestimmung von Referenzgrenzen mittels intra-laboratorieller Datensätze am Beispiel von Elektrolyt-Konzentrationen. J. Lab. Med. 33(2), 52–66 (2009)

    Google Scholar 

  65. Arzideh, F., Wosniok, W., Haeckel, R.: Reference limits of plasma and serum creatinine concentrations from intra-laboratory data bases of several German and Italian medical centres: comparison between direct and indirect procedures. Clin. Chim. Acta 411(3–4), 215–221 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dian N. Nasuruddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nasuruddin, D.N., Salwana, E., Sarker, M.R., Ali, A., Loh, T.P. (2024). Data Mining in Establishing the Indirect Reference Intervals of Biochemical and Haematological Assays in the Paediatric Population: A Review. In: Badioze Zaman, H., et al. Advances in Visual Informatics. IVIC 2023. Lecture Notes in Computer Science, vol 14322. Springer, Singapore. https://doi.org/10.1007/978-981-99-7339-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7339-2_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7338-5

  • Online ISBN: 978-981-99-7339-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics