Abstract
In cancelable biometric (CB) schemes, secure biometric templates are generated by applying, mainly non-linear, transformations to the origin data. The cancelable templates should satisfy the requirements of irreversibility, unlinkability, and revocability with high accuracy. However, existing cancelable biometric schemes have been demonstrated that their security is overestimated. Many well-known cancelable biometric schemes have been proven vulnerable to some attack models. In this paper, we analyze a recent alignment-robust cancelable biometric scheme called Random Augmented Histogram of Gradients (R\(\cdot \)HoG) that is not as unlinkable as proposed. Moreover, we propose two schemes to attack the unlinkability of R\(\cdot \)HoG. One is that two cancelable templates from different applications are directly connected according to the leaked tokens, and the other is based on the reverse of Z-score transformation, which can achieve higher linkability. Experimental results on CASIA-IrisV3-Interval show that the cancelable biometric template generated by R\(\cdot \)HoG has high linkability with a maximum link success rate of 95.62%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Information Technology Security Techniques Biometric Information Protection, document ISO/IEC 24745:2011 (2011)
Bringer, J., Morel, C., Rathgeb, C.: Security analysis of bloom filter-based iris biometric template protection. In: 2015 International Conference on Biometrics (ICB), pp. 527–534 (2015). https://doi.org/10.1109/ICB.2015.7139069
Cheung, K.H., Kong, A.W.K., You, J., Zhang, D., et al.: An analysis on invertibility of cancelable biometrics based on biohashing. In: CISST, vol. 2005, pp. 40–45. Citeseer (2005)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)
Dang, T.M., Nguyen, T.D., Hoang, T., Kim, H., Beng Jin Teoh, A., Choi, D.: AVET: a novel transform function to improve cancellable biometrics security. IEEE Trans. Inf. Forensics Secur. 18, 758–772 (2023). https://doi.org/10.1109/TIFS.2022.3230212
Dargan, S., Kumar, M.: A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities. Expert Syst. Appl. 143, 113114 (2020). https://doi.org/10.1016/j.eswa.2019.113114
Datta, P., Bhardwaj, S., Panda, S.N., Tanwar, S., Badotra, S.: Survey of security and privacy issues on biometric system. In: Gupta, B.B., Perez, G.M., Agrawal, D.P., Gupta, D. (eds.) Handbook of Computer Networks and Cyber Security, pp. 763–776. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22277-2_30
Dong, X., Jin, Z., Jin, A.T.B.: A genetic algorithm enabled similarity-based attack on cancellable biometrics. In: 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–8 (2019). https://doi.org/10.1109/BTAS46853.2019.9185997
Gavrilova, M.L., et al.: A multifaceted role of biometrics in online security, privacy, and trustworthy decision making. In: Daimi, K., Francia III, G., Encinas, L.H. (eds.) Breakthroughs in Digital Biometrics and Forensics, pp. 303–324. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10706-1_14
Ghammam, L., Karabina, K., Lacharme, P., Thiry-Atighehchi, K.: A cryptanalysis of two cancelable biometric schemes based on index-of-max hashing. IEEE Trans. Inf. Forensics Secur. 15, 2869–2880 (2020). https://doi.org/10.1109/TIFS.2020.2977533
Gomez-Barrero, M., Galbally, J., Rathgeb, C., Busch, C.: General framework to evaluate unlinkability in biometric template protection systems. IEEE Trans. Inf. Forensics Secur. 13(6), 1406–1420 (2018). https://doi.org/10.1109/TIFS.2017.2788000
Hermans, J., Mennink, B., Peeters, R.: When a bloom filter is a doom filter: security assessment of a novel iris biometric template protection system. In: 2014 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–6 (2014)
Jin, A.T.B., Ling, D.N.C., Goh, A.: Biohashing: two factor authentication featuring fingerprint data and tokenised random number. Pattern Recogn. 37(11), 2245–2255 (2004). https://doi.org/10.1016/j.patcog.2004.04.011
Kong, A., Cheung, K.H., Zhang, D., Kamel, M., You, J.: An analysis of biohashing and its variants. Pattern Recogn. 39(7), 1359–1368 (2006). https://doi.org/10.1016/j.patcog.2005.10.025
Lacharme, P., Cherrier, E., Rosenberger, C.: Preimage attack on biohashing. In: 2013 International Conference on Security and Cryptography (SECRYPT), pp. 1–8 (2013)
Lee, M.J., Jin, Z., Liang, S.N., Tistarelli, M.: Alignment-robust cancelable biometric scheme for iris verification. IEEE Trans. Inf. Forensics Secur. 17, 3449–3464 (2022). https://doi.org/10.1109/TIFS.2022.3208812
Lee, Y., Chung, Y., Moon, K.: Inverse operation and preimage attack on biohashing. In: 2009 IEEE Workshop on Computational Intelligence in Biometrics: Theory, Algorithms, and Applications, pp. 92–97 (2009). https://doi.org/10.1109/CIB.2009.4925692
Liao, H., Zhao, D., Li, H., Xiang, J.: Cancelable iris biometric based on ordinal value fusion strategy. J. Wuhan Univ. (Nat. Sci. Edn.) 1–10 (2023). https://doi.org/10.14188/j.1671-8836.2022.0211
Lutsenko, M., Kuznetsov, A., Kiian, A., Smirnov, O., Kuznetsova, T.: Biometric cryptosystems: overview, state-of-the-art and perspective directions. In: Ilchenko, M., Uryvsky, L., Globa, L. (eds.) MCT 2019. LNNS, vol. 152, pp. 66–84. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58359-0_5
Natgunanathan, I., Mehmood, A., Xiang, Y., Beliakov, G., Yearwood, J.: Protection of privacy in biometric data. IEEE Access 4, 880–892 (2016). https://doi.org/10.1109/ACCESS.2016.2535120
Ouda, O.: On the practicality of local ranking-based cancelable iris recognition. IEEE Access 9, 86392–86403 (2021). https://doi.org/10.1109/ACCESS.2021.3089078
Ouda, O., Chaoui, S., Tsumura, N.: Security evaluation of negative iris recognition. IEICE Trans. Inf. Syst. 103(5), 1144–1152 (2020)
Ouda, O., Tsumura, N., Nakaguchi, T.: On the security of bioencoding based cancelable biometrics. IEICE Trans. Inf. Syst. 94(9), 1768–1777 (2011)
Patel, V.M., Ratha, N.K., Chellappa, R.: Cancelable biometrics: a review. IEEE Signal Process. Mag. 32(5), 54–65 (2015). https://doi.org/10.1109/MSP.2015.2434151
Rathgeb, C., Breitinger, F., Busch, C.: Alignment-free cancelable iris biometric templates based on adaptive bloom filters. In: 2013 International Conference on Biometrics (ICB), pp. 1–8 (2013). https://doi.org/10.1109/ICB.2013.6612976
Teoh, A.B., Kuan, Y.W., Lee, S.: Cancellable biometrics and annotations on biohash. Pattern Recogn. 41(6), 2034–2044 (2008). https://doi.org/10.1016/j.patcog.2007.12.002
Topcu, B., Karabat, C., Azadmanesh, M., Erdogan, H.: Practical security and privacy attacks against biometric hashing using sparse recovery. EURASIP J. Adv. Signal Process. 2016(1), 1–20 (2016)
Wang, H., Dong, X., Jin, Z., Teoh, A.B.J., Tistarelli, M.: Interpretable security analysis of cancellable biometrics using constrained-optimized similarity-based attack. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshops, pp. 70–77 (2021)
Zhao, D., Fang, S., Xiang, J., Tian, J., Xiong, S.: Iris template protection based on local ranking. Secur. Commun. Netw. 2018, 1–9 (2018)
Acknowledgements
This work was partially supported by the National Natural Science Foundation of China (Grant No. 61806151), and the Natural Science Foundation of Chongqing City (Grant No. CSTC2021JCYJ-MSXMX0002).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Fan, N., Zhao, D., Liao, H. (2023). Security Analysis of Alignment-Robust Cancelable Biometric Scheme for Iris Verification. In: Wang, D., Yung, M., Liu, Z., Chen, X. (eds) Information and Communications Security. ICICS 2023. Lecture Notes in Computer Science, vol 14252. Springer, Singapore. https://doi.org/10.1007/978-981-99-7356-9_16
Download citation
DOI: https://doi.org/10.1007/978-981-99-7356-9_16
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-7355-2
Online ISBN: 978-981-99-7356-9
eBook Packages: Computer ScienceComputer Science (R0)