Skip to main content

Multi-scale Features Destructive Universal Adversarial Perturbations

  • Conference paper
  • First Online:
Information and Communications Security (ICICS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14252))

Included in the following conference series:

  • 672 Accesses

Abstract

Deep Neural Networks (DNNs) are suffering from adversarial attacks, where some imperceptible perturbations are added into examples and cause incorrect predictions. Generally, there are two types of adversarial attack methods, i.e., image-dependent and image agnostic. As for the first one, Image-dependent attacks involve crafting unique adversarial perturbations for each clean example. As for the latter case, image-agnostic attacks create a universal adversarial perturbation (UAP) that can fool the target model for all clean examples. However, existing UAP methods only utilize the output of the target DNNs within a limited magnitude, resulting in an ineffective application of UAP to the entire feature extraction process of the DNNs. In this paper, we consider the difference between the mid-level features of the clean example and their corresponding adversarial example in the different intermediate layers of target DNN. Specifically, we maximize the impact of the adversarial examples in the forward propagation process by pulling apart the feature representations of the clean and adversarial examples. Moreover, to achieve targeted and non-targeted attacks, we design a loss function that highlights the UAP feature representation to guide the direction of perturbations in the feature layers. Furthermore, to reduce the training time and training parameters, we adopt a direct optimization approach to craft UAPs and experimentally demonstrate that we can achieve a higher fooling rate with fewer examples. Extensive experimental results show that our approach outperforms state-of-the-art methods in both non-targeted and targeted universal attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: S &P (2017)

    Google Scholar 

  2. Chen, K., Guo, S., Zhang, T., Li, S., Liu, Y.: Temporal watermarks for deep reinforcement learning models. In: Dignum, F., Lomuscio, A., Endriss, U., Nowé, A. (eds.) AAMAS, pp. 314–322 (2021)

    Google Scholar 

  3. Chen, K., et al.: Badpre: task-agnostic backdoor attacks to pre-trained NLP foundation models. In: ICLR (2022)

    Google Scholar 

  4. Dai, J., Shu, L.: Fast-UAP: an algorithm for expediting universal adversarial perturbation generation using the orientations of perturbation vectors. Neurocomputing 422, 109–117 (2021)

    Article  Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20–25 June 2009, Miami, Florida, USA (2009)

    Google Scholar 

  6. Dolatabadi, H.M., Erfani, S., Leckie, C.: Advflow: inconspicuous black-box adversarial attacks using normalizing flows. In: NIPS (2020)

    Google Scholar 

  7. Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., Li, J.: Boosting adversarial attacks with momentum. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)

    Google Scholar 

  9. Hayes, J., Danezis, G.: Learning universal adversarial perturbations with generative models. In: SP (2018)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016 (2016)

    Google Scholar 

  11. He, S., et al.: Type-i generative adversarial attack. IEEE Trans. Dependable Secure Comput. 20(3), 2593–2606 (2023)

    Article  Google Scholar 

  12. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21–26, 2017 (2017)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  14. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Handbook of Systemic Autoimmune Diseases (2009)

    Google Scholar 

  15. Li, G., Ding, S., Luo, J., Liu, C.: Enhancing intrinsic adversarial robustness via feature pyramid decoder. In: CVPR, pp. 797–805. Computer Vision Foundation/IEEE (2020)

    Google Scholar 

  16. Li, G., Xu, G., Qiu, H., He, R., Li, J., Zhang, T.: Improving adversarial robustness of 3D point cloud classification models. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV2022. LNCS, vol. 13664, pp. 672–689. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19772-7_39

    Chapter  Google Scholar 

  17. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR (2017)

    Google Scholar 

  18. Mangla, P., Jandial, S., Varshney, S., Balasubramanian, V.N.: Advgan++ : Hrnessing latent layers for adversary generation. In: ICCV (2019)

    Google Scholar 

  19. Moosavi-Dezfooli, S., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: CVPR (2017)

    Google Scholar 

  20. Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: CVPR (2016)

    Google Scholar 

  21. Mopuri, K.R., Ganeshan, A., Babu, R.V.: Generalizable data-free objective for crafting universal adversarial perturbations. IEEE Trans. Pattern Anal. Mach. Intell. 41, 2452–2465 (2019)

    Article  Google Scholar 

  22. Mopuri, K.R., Garg, U., Radhakrishnan, V.B.: Fast feature fool: a data independent approach to universal adversarial perturbations. In: BMVC (2017)

    Google Scholar 

  23. Mopuri, K.R., Ojha, U., Garg, U., Babu, R.V.: NAG: network for adversary generation. In: CVPR (2018)

    Google Scholar 

  24. Mopuri, K.R., Uppala, P.K., Babu, R.V.: Ask, acquire, and attack: data-free UAP generation using class impressions. In: ECCV (2018)

    Google Scholar 

  25. Peng, W., et al.: EnsembleFool: a method to generate adversarial examples based on model fusion strategy. Comput. Secur. 107, 102317 (2021)

    Article  Google Scholar 

  26. Poursaeed, O., Katsman, I., Gao, B., Belongie, S.J.: Generative adversarial perturbations. In: CVPR (2018)

    Google Scholar 

  27. Ren, M., Zhu, Y., Wang, Y., Sun, Z.: Perturbation inactivation based adversarial defense for face recognition. IEEE Trans. Inf. Forensics Secur. 17, 2947–2962 (2022)

    Article  Google Scholar 

  28. Sharif, A., Marijan, D.: Adversarial deep reinforcement learning for improving the robustness of multi-agent autonomous driving policies. In: 29th Asia-Pacific Software Engineering Conference, APSEC 2022, Virtual Event, Japan, December 6–9, 2022 (2022)

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015)

    Google Scholar 

  30. Sun, M., Tang, F., Yi, J., Wang, F., Zhou, J.: Identify susceptible locations in medical records via adversarial attacks on deep predictive models. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19–23, 2018 (2018)

    Google Scholar 

  31. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  32. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)

    Google Scholar 

  33. Tu, C.C., et al.: Autozoom: autoencoder-based zeroth order optimization method for attacking black-box neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  34. Xiao, C., Li, B., Zhu, J.Y., He, W., Liu, M., Song, D.: Generating adversarial examples with adversarial networks. CoRR (2018)

    Google Scholar 

  35. Zhang, C., Benz, P., Imtiaz, T., Kweon, I.S.: Understanding adversarial examples from the mutual influence of images and perturbations. In: CVPR (2020)

    Google Scholar 

  36. Zhang, C., Benz, P., Karjauv, A., Kweon, I.S.: Data-free universal adversarial perturbation and black-box attack. In: ICCV (2021)

    Google Scholar 

  37. Zhang, Y., Ruan, W., Wang, F., Huang, X.: Generalizing universal adversarial attacks beyond additive perturbations. In: Plant, C., Wang, H., Cuzzocrea, A., Zaniolo, C., Wu, X. (eds.) 20th IEEE International Conference on Data Mining, ICDM 2020, Sorrento, Italy, November 17–20, 2020 (2020)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grant 62162067 and 62101480, in part by the Fund Project of Yunnan Province Education Department under Grant No.2022j0008, in part by the Yunnan Province Science Foundation under Grant No.202005AC160007, No.202001BB050076, Research and Application of Object detection based on Artificial Intelligence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunyun Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, H., Li, H., Zhang, J., Zhou, W., Guo, L., Dong, Y. (2023). Multi-scale Features Destructive Universal Adversarial Perturbations. In: Wang, D., Yung, M., Liu, Z., Chen, X. (eds) Information and Communications Security. ICICS 2023. Lecture Notes in Computer Science, vol 14252. Springer, Singapore. https://doi.org/10.1007/978-981-99-7356-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7356-9_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7355-2

  • Online ISBN: 978-981-99-7356-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics