Abstract
We propose an anonymous broadcast authentication (ABA) scheme to simultaneously control massive numbers of devices within practical resources. As a theoretical foundation, we find a barrier to construct an ABA working with a larger number of devices: there is a trilemma between (i) security, (ii) ciphertext length, and (iii) freedom in the target devices selection. For practical use, we propose ABAs with a ciphertext size of \(O(\log N)\) where N is the number of target devices while we impose a certain restriction on (iii). We provide an ABA template and instantiate it into a specific scheme from the learning with errors (LWE) problem. Then, we give estimation of size and timing resources.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional Encryption for Inner Product Predicates from Learning with Errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_2
Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using private broadcast encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006). https://doi.org/10.1007/11889663_4
Beimel, A., Dolev, S.: Buses for anonymous message delivery. J. Cryptol. 16(1), 25–39 (2003). https://doi.org/10.1007/s00145-002-0128-6
Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_16
Chhatrapati, A., Hohenberger, S., Trombo, J., Vusirikala, S.: A performance evaluation of pairing-based broadcast encryption systems. In: Ateniese, G., Venturi, D. (eds.) ACNS 2022. LNCS, vol. 13269, pp. 24–44. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09234-3_2
Dolev, S., Ostrobsky, R.: XOR-trees for efficient anonymous multicast and reception. ACM Trans. Inf. Syst. Secur. 3(2), 63–84 (2000). https://doi.org/10.1145/354876.354877
Estimate all the LWE, NTRU schemes!
Falcon: Fast-Fourier Lattice-based Compact Signatures over NTRU Specification v1.2 - 01/10/2020
Fazio, N., Perera, I.M.: Outsider-anonymous broadcast encryption with sublinear ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 225–242. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_14
FrodoKEM Learning With Errors Key Encapsulation Algorithm Specifications And Supporting Documentation (2021)
Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully collusion-resilient traitor tracing and revocation schemes. In: Proceedings of CCS 2010, New York, NY, USA, pp. 121–130 (2010)
Georgescu, A.: Anonymous lattice-based broadcast encryption. In: Mustofa, K., Neuhold, E.J., Tjoa, A.M., Weippl, E., You, I. (eds.) ICT-EurAsia 2013. LNCS, vol. 7804, pp. 353–362. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36818-9_39
Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: testing and benchmarking NIST PQC on ARM Cortex-M4 (2019)
Kiayias, A., Samari, K.: Lower bounds for private broadcast encryption. In: Kirchner, M., Ghosal, D. (eds.) IH 2012. LNCS, vol. 7692, pp. 176–190. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36373-3_12
Kobayashi, H., Watanabe, Y., Minematsu, K., Shikata, J.: Tight lower bounds and optimal constructions of anonymous broadcast encryption and authentication. Designs Codes Cryptogr. 91, 2523–2562 (2023)
Kurosawa, K., Yoshida, T., Desmedt, Y., Burmester, M.: Some bounds and a construction for secure broadcast encryption. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 420–433. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1_33
Lee, J., Lee, S., Kim, J., Oh, H.: Combinatorial subset difference - IoT-friendly subset representation and broadcast encryption. Sensors 20(11), 3140 (2020)
Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption: adaptive security and efficient constructions in the standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 206–224. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_13
Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21
Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Verbauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_19
Nuttapong, A.: Unified frameworks for practical broadcast encryption and public key encryption with high functionalities. Ph.D. thesis (2007)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of STOC 2005, pp. 84–93 (2005)
Sobti, R., Ganesan, G.: Performance evaluation of SHA-3 final round candidate algorithms on ARM Cortex-M4 processor. Int. J. Inf. Secur. Priv. (IJISP) 12(1), 63–73 (2018)
Watanabe, Y., Yanai, N., Shikata, J.: Anonymous broadcast authentication for securely remote-controlling IoT devices. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021. LNNS, vol. 226, pp. 679–690. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75075-6_56
Watanabe, Y., Yanai, N., Shikata, J.: IoT-REX: a secure remote-control system for IoT devices from centralized multi-designated verifier signatures. In: Proceedings of ISPEC 2023. Springer, Cham (2023, to appear)
Acknowledgement
This research was in part conducted under a contract of “Research and development on IoT malware removal/make it non-functional technologies for effective use of the radio spectrum” among “Research and Development for Expansion of Radio Wave Resources (JPJ000254)”, which was supported by the Ministry of Internal Affairs and Communications, Japan. This work was in part supported by JSPS KAKENHI Grant Number JP22H03590.
We thank the anonymous reviewers for their careful readings and insightful comments that improve the quality of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Aono, Y., Shikata, J. (2023). Anonymous Broadcast Authentication with Logarithmic-Order Ciphertexts from LWE. In: Deng, J., Kolesnikov, V., Schwarzmann, A.A. (eds) Cryptology and Network Security. CANS 2023. Lecture Notes in Computer Science, vol 14342. Springer, Singapore. https://doi.org/10.1007/978-981-99-7563-1_2
Download citation
DOI: https://doi.org/10.1007/978-981-99-7563-1_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-7562-4
Online ISBN: 978-981-99-7563-1
eBook Packages: Computer ScienceComputer Science (R0)