Skip to main content

Learning Mealy Machines with Local Timers

  • Conference paper
  • First Online:
Formal Methods and Software Engineering (ICFEM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14308))

Included in the following conference series:

  • 275 Accesses

  • The original version of this chapter was revised: in Section 4.1 and the Figure 4 has been displayed incorrectly. This was corrected. The correction to this chapter is available at https://doi.org/10.1007/978-981-99-7584-6_23

Abstract

Active automata learning (AAL) algorithms infer accurate automata models of black box applications, letting developers verify the behavior of increasingly complex real-time systems (RTS). However, learning models of larger RTS often takes very long or is not feasible at all. We introduce Mealy machines with local timers, a new class of Mealy machines that permit multiple location-bound timers and that can be learned efficiently. We design an efficient learning algorithm for them and validate our method across diverse case studies ranging from automotive systems to smart home appliances, where we drastically reduce runtimes compared to the state-of-the-art approach, thus, making AAL available for a wide range of RTS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 09 November 2023

    A correction has been published.

Notes

  1. 1.

    https://learnlib.de.

  2. 2.

    As in timed automata, locations in MMLTs can represent multiple system states.

  3. 3.

    We usually abort an observation after some maximum waiting time \(\varDelta \) during learning, thus, giving these transitions the output \((\varDelta , void)\) in practice.

  4. 4.

    We omit this loop in Fig. 1b for readability because its output is silent.

  5. 5.

    Models and MMLT learner available at git.tu-berlin.de/pkogel/mmlt-learning.

References

  1. Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: learning timed automata efficiently. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229, pp. 1–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6_1

    Chapter  Google Scholar 

  2. Aichernig, B.K., Tappler, M., Wallner, F.: Benchmarking combinations of learning and testing algorithms for active automata learning. In: Ahrendt, W., Wehrheim, H. (eds.) TAP 2020. LNCS, vol. 12165, pp. 3–22. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50995-8_1

    Chapter  Google Scholar 

  3. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed automata. In: TACAS 2020. LNCS, vol. 12078, pp. 444–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45190-5_25

    Chapter  Google Scholar 

  4. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata. Theor. Comput. Sci. 411(47) (2010)

    Google Scholar 

  5. Henry, L., Jéron, T., Markey, N.: Active learning of timed automata with unobservable resets. In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288, pp. 144–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57628-8_9

    Chapter  Google Scholar 

  6. Howar, F., Steffen, B.: Active automata learning as black-box search and lazy partition refinement. In: In: Jansen, N., Stoelinga, M., van den Bos, P. (eds.) A Journey from Process Algebra via Timed Automata to Model Learning. LNCS, vol. 13560. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15629-8_17

  7. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_26

    Chapter  Google Scholar 

  8. Kogel, P., Klös, V., Glesner, S.: TTT/IK: learning accurate mealy automata efficiently with an imprecise symbol filter. In: Riesco, A., Zhang, M. (eds.) Formal Methods and Software Engineering, vol. 13478, pp. 227–243. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17244-1_14

  9. Rivest, R., Schapire, R.: Inference of finite automata using homing sequences. Inf. Comput. 103(2) (1993)

    Google Scholar 

  10. Stewart, R., Tüxen, M., Nielsen, K.: Stream Control transmission protocol. Technical report (2022). https://doi.org/10.17487/rfc9260

  11. Tang, X., Shen, W., Zhang, M., An, J., Zhan, B., Zhan, N.: Learning deterministic one-clock timed automata via mutation testing. In: Bouajjani, A., Holík, L., Wu, Z. (eds.) ATVA 2022, vol. 1350, pp. 233–248. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19992-9_15

  12. Vaandrager, F., Ebrahimi, M., Bloem, R.: Learning Mealy machines with one timer. Inf. Comput. (2023)

    Google Scholar 

  13. Vaandrager, F., Garhewal, B., Rot, J., Wißmann, T.: A new approach for active automata learning based on apartness. In: TACAS 2022. LNCS, vol. 13243, pp. 223–243. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_12

    Chapter  Google Scholar 

  14. Xu, R., An, J., Zhan, B.: Active learning of one-clock timed automata using constraint solving. In: Bouajjani, A., Holík, L., Wu, Z. (eds.) ATVA 202. LNCS, vol. 13505, pp. 249–265. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19992-9_16

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kogel, P., Klös, V., Glesner, S. (2023). Learning Mealy Machines with Local Timers. In: Li, Y., Tahar, S. (eds) Formal Methods and Software Engineering. ICFEM 2023. Lecture Notes in Computer Science, vol 14308. Springer, Singapore. https://doi.org/10.1007/978-981-99-7584-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7584-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7583-9

  • Online ISBN: 978-981-99-7584-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics