Abstract
In this paper, we consider the problem of scheduling with hierarchies and overload cost (SHOC). Given a set of jobs \(\mathcal{J} =\{J_1,\ldots ,J_n\}\), a set of two hierarchical identical parallel machines \(\mathcal{M}=\{M_1,M_2\}\), a processing time function p and a hierarchy function g on the job set \(\mathcal J\), a regular working time \(L_0\) of the machines, a start-up cost \(c_0\) and a cost \(c_1\) of per unit overload, and the hierarchies of the machines \(M_1\) and \(M_2\) are 1 and 2 respectively. Each machine can only process the jobs whose hierarchies are no less than the hierarchy of this machine. We are asked to assign all jobs of \(\mathcal{J}\) to the machines \(M_1\) and \(M_2\), and if the total processing time \(L_i\,(i=1,2)\) of any machine is more than \(L_0\), a charge of \(c_1\) should be paid for per unit overload. The objective is to minimize the total cost of processing all the jobs. We design a \(1+\frac{1}{20}c_1/c_0\)-approximation algorithm to solve our problem by using the LPT method. And based on four characteristics of optimal solutions and two dynamic programmings, we give a pseudo-polynomial time algorithm to find an optimal solution in \(\mathcal{O}(nL_0)\) time.
Similar content being viewed by others
References
Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling on parallel machines. J. Sched. 1(1), 55–66 (1998)
Bar-Noy, A., Freund, A., Naor, J.: On-line load balancing in a hierarchical server topology. SIAM J. Comput. 31(2), 527–549 (2001)
Chen, X., Sterna, M., Han, X., Blazewicz, J.: Scheduling on parallel identical machines with late work criterion: offline and online cases. Int. J. Sched. 19(6), 729–736 (2016)
Chen, X., Kovalev, S., Liu, Y., Sterna, M., Chalamon, I., Blazewicz, J.: Semi-online scheduling on two identical machines with a common due date to maximize total early work. Discret. Appl. Math. 290, 71–78 (2021)
Coffman, E.G., Jr., Lueker, G.S.: Approximation algorithms for extensible bin packing. J. Sched. 9(1), 63–69 (2006)
Dai, B., Li, J., Li, W.: Semi-online hierarchical scheduling for bag-of-tasks on two machines. In: 2nd International Conference on Computer Science and Artificial Intelligence Proceedings, pp. 609–614. Association for Computing Machinery, New York, United States (2018)
Dell’Olmo, P., Kellerer, H., Speranza, M.G., Tuza, Z.: A 13/12 approximation algorithm for bin packing with extendable bins. Inf. Process. Lett. 65(5), 229–233 (1998)
Dell’Olmo, P., Speranza, M.G.: Approximation algorithms for partitioning small items in unequal bins to minimize the total size. Discret. Appl. Math. 4(1–3), 181–191 (1999)
Epstein, L., Tassa, T.: Vector assignment schemes for asymmetric settings. Acta Informatica 42, 501–514 (2006)
Graham, R.L.: Bounds on multiprocessor timing anomalies. SIAM J. Appl. Math. 17(2), 416–29 (1969)
Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)
Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems theoretical and practical results. J. ACM 34(1), 144–162 (1987)
Hwang, H.C., Chang, S.Y., Lee, K.: Parallel machine scheduling under a grade of service provision. Comput. Oper. Res. 31(12), 2055–2061 (2004)
Ji, M., Cheng, T.C.E.: An FPTAS for parallel-machine scheduling under a grade of service provision to minimize makespan. Inf. Process. Lett. 108(4), 171–174 (2008)
Jiang, Y.: Online scheduling on parallel machines with two GoS levels. J. Comb. Optim. 16(1), 28–38 (2008)
Levin, A.: Approximation schemes for the generalized extensible bin packing problem. Algorithmica 84(2), 325–343 (2022)
Li, J., Li, W., Li, J.: Polynomial approximation schemes for the max-min allocation problem under a grade of service provision. Discrete Math. Algorithms Appl. 1(03), 355–368 (2009)
Ou, J., Leung, J.Y.T., Li, C.L.: Scheduling parallel machines with inclusive processing set restrictions. Nav. Res. Logist. 55(4), 328–338 (2008)
Park, J., Chang, S.Y., Lee, K.: Online and semi-online scheduling of two machines under a grade of service provision. Oper. Res. Lett. 34(6), 692–696 (2006)
Speranza, M.G., Tuza, Z.: On-line approximation algorithms for scheduling tasks on identical machines withextendable working time. Ann. Oper. Res. 86, 491–506 (1999)
Wei, Q., Wu, Y., Cheng, T.C.E., Sun, F., Jiang, Y.: Online hierarchical parallel-machine scheduling in shared manufacturing to minimize the total completion time. J. Oper. Res. Soc. 74, 1–23 (2022)
Woeginger, G.: When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS J. Comput. 12(1), 57–74 (2000)
Wu, G., Li, W.: Semi-online machine covering on two hierarchical machines with discrete processing times. In: Li, L., Lu, P., He, K. (eds.) NCTCS 2018. CCIS, vol. 882, pp. 1–7. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-2712-4_1
Xiao, M., Liu, X., Li, W., Chen, X., Sterna, M., Blazewicz, J.: Online and semi-online scheduling on two hierarchical machines with a common due date to maximize the total early work. arXiv preprint arXiv:2209.08704, https://doi.org/10.48550/arXiv.2209.08704 (2022)
Xiao, M., Li, W.: Online early work maximization on three hierarchical machines with a common due date. In: Li, M., Sun, X. (eds.) Frontiers of Algorithmic Wisdom. IJTCS-FAW 2022. LNCS, vol. 13461, pp. 99–109. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20796-9_8
Xiao, M., Du, Y., Li, W., Yang, J.: Semi-online machine covering problem on three hierarchical machines with bounded processing times. J. Oper. Res. Soc. China 1–13 (2023). https://doi.org/10.1007/s40305-023-00477-1
Ye, D., Zhang, G.: On-line extensible bin packing with unequal bin sizes. Discrete Math. Theor. Comput. Sci. 11(1), 141–152 (2009)
Zhang, A., Jiang, Y., Tan, Z.: Online parallel machines scheduling with two hierarchies. Theoret. Comput. Sci. 410(38–40), 3597–3605 (2009)
Acknowledgements
The work is supported by the General Program of Yunnan Province Science and Technology Department [No. 202001BB050062], and the Postgraduate Research and Innovation Foundation of Yunnan University under Grant KC-22221129.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yang, Y., Fu, W., Ding, H. (2024). Scheduling with Hierarchies and Overload Cost. In: Cai, Z., Xiao, M., Zhang, J. (eds) Theoretical Computer Science. NCTCS 2023. Communications in Computer and Information Science, vol 1944. Springer, Singapore. https://doi.org/10.1007/978-981-99-7743-7_8
Download citation
DOI: https://doi.org/10.1007/978-981-99-7743-7_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-7742-0
Online ISBN: 978-981-99-7743-7
eBook Packages: Computer ScienceComputer Science (R0)