Abstract
Predictive analytics in the realm of health has taken on a critical role in disease prevention, particularly concerning prevalent ailments in society. The World Health Organization reports that asthma affected approximately 262 million individuals in 2019, resulting in 455,000 deaths. Each year, asthma-related concerns account for over one million visits to emergency departments, as highlighted by the American College of Asthma, Allergy & Immunology. For developing the model, we are using a configurable algorithm called Predicting Peak Demand (PPD) to anticipate days with elevated asthma-related Emergency Department (ED) visits and hospitalisations in Auckland, New Zealand. By leveraging diverse data sources, the model acts as a valuable planning tool for public health providers, particularly during periods of heightened demand, such as instances of overcrowding witnessed during cold weather or disease outbreaks like COVID-19. The PPD algorithm employed in this model effectively forecasts asthma-related hospitalisations. Meteorological factors, air quality data, and Google trends constitute the sources utilised in building the model. Comparative analysis was conducted using various machine learning algorithms, including ensemble modelling, with a dataset spanning 1,097 continuous days. Techniques like SMOTE and Random Over-Sampling were implemented to address class imbalance to generate synthetic data for the minority class. Experimental evaluation reveals that this model achieves an accuracy of approximately 91.00% in predicting peak demand days for asthma-related hospitalisations. The utilisation of this diverse data-driven model for predicting adverse events like asthma-related overcrowding at a population level can lead to timely interventions, mitigating the socio-economic impact of asthma.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Soil moisture deficit, where full is 0 mm, and empty is 150 mm (AWC Available Water Capacity), refer National Climate Database: https://cliflo.niwa.co.nz/, for more details.
References
Accordini, S., et al.: The cost of persistent asthma in Europe: an international population-based study in adults. Int. Arch. Allergy Immunol. 160, 93–101 (2012). https://doi.org/10.1159/000338998
Babin, S., et al.: Pediatric patient asthma-related emergency department visits and admissions in Washington, DC, from 2001–2004, and associations with air quality, socio-economic status and age group. Environ. Health Glob. Access Sci. Source 6, 9 (2007). https://doi.org/10.1186/1476-069X-6-9
Bradley, S.: How common is asthma? Worldwide facts and statistics (2022). https://www.singlecare.com/blog/asthma-statistics/. Accessed 09 April 2022
Bridge, J., Blakey, J.D., Bonnett, L.J.: A systematic review of methodology used in the development of prediction models for future asthma exacerbation. BMC Med. Res. Methodol. 20 (2020)
Buyuktiryaki, B., et al.: Predicting hospitalization in children with acute asthma. J. Emergency Med. 44 (2013). https://doi.org/10.1016/j.jemermed.2012.10.015
Byers, N., Ritchey, M., Vaidyanathan, A., Brandt, A., Yip, F.: Short-term effects of ambient air pollutants on asthma-related emergency department visits in Indianapolis, Indiana, 2007–2011. J. Asthma Off. J. Assoc. Care Asthma 53, 1–8 (2015). https://doi.org/10.3109/02770903.2015.1091006
Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. (JAIR) 16, 321–357 (2002). https://doi.org/10.1613/jair.953
Custovic, A., et al.: Eaaci position statement on asthma exacerbations and severe asthma. Allergy 68(12), 1520–1531 (2013). https://doi.org/10.1111/all.12275
Khatri, K., Tamil, L.: Early detection of peak demand days of chronic respiratory diseases emergency department visits using artificial neural networks. IEEE J. Biomedical Health Inform, 1 (2017). https://doi.org/10.1109/JBHI.2017.2698418
Kumar, B.: 10 Techniques to deal with Imbalanced Classes in Machine Learning (2020). https://www.analyticsvidhya.com/blog/2020/07/10-techniques-to-deal-with-class-imbalance-in-machine-learning/. Accessed 2 Oct 2021
Ram, S., Zhang, W., Williams, M., Pengetnze, Y.: Predicting asthma-related emergency department visits using big data. IEEE J. Biomedical Health Inform. 19 (2015). https://doi.org/10.1109/JBHI.2015.2404829
Soyiri, I., Reidpath, D.: An overview of health forecasting. Environ. Health Prevent. Med. 18 (2012). https://doi.org/10.1007/s12199-012-0294-6
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Bhalla, R., Mirza, F., Naeem, M.A., Chan, A.H.Y. (2023). Predicting Peak Demand Days for Asthma-Related Emergency Hospitalisations: A Machine Learning Approach. In: Wu, S., Yang, W., Amin, M.B., Kang, BH., Xu, G. (eds) Knowledge Management and Acquisition for Intelligent Systems. PKAW 2023. Lecture Notes in Computer Science(), vol 14317. Springer, Singapore. https://doi.org/10.1007/978-981-99-7855-7_1
Download citation
DOI: https://doi.org/10.1007/978-981-99-7855-7_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-7854-0
Online ISBN: 978-981-99-7855-7
eBook Packages: Computer ScienceComputer Science (R0)