Skip to main content

Automated Cattle Behavior Classification Using Wearable Sensors and Machine Learning Approach

  • Conference paper
  • First Online:
Knowledge Management and Acquisition for Intelligent Systems (PKAW 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14317))

Included in the following conference series:

  • 109 Accesses

Abstract

This paper focuses on automating the classification of in-house cattle behavior using collar tags equipped with tri-axial accelerometers to collect data on feeding and ruminating behaviors. The accelerometer data is divided into time intervals (10, 30, 60, and 180 s), and we extract 15 essential posture-related features to create a labeled dataset for behavior classification. We evaluate four machine learning algorithms (Random Forest, Extreme Gradient Boosting, Decision Tree, and Logistic Regression) on this dataset using leave-one-out cross-validation. The results indicate that shorter time intervals result in better prediction performance. Random Forest and Decision Tree algorithms perform well, striking a good balance between sensitivity and specificity. This proposed approach holds promise for real-time behavior classification and has the potential to benefit livestock management and enhance animal welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antanaitis, R., et al.: Change in rumination behavior parameters around calving in cows with subclinical ketosis diagnosed during 30 days after calving. Animals 13 (2023). https://doi.org/10.3390/ani13040595

  2. Barwick, J., Lamb, D.W., Dobos, R., Welch, M., Trotter, M.: Categorising sheep activity using a tri-axial accelerometer. Computers and Electronics in Agriculture 145, 289–297 (2018). https://www.sciencedirect.com/science/article/pii/S0168169917311468

  3. Benaissa, S., et al.: On the use of on-cow accelerometers for the classification of behaviours in dairy barns. Res. Veterinary Sci. 125, 425–433 (2019). https://www.sciencedirect.com/science/article/pii/S003452881730423X

  4. Brouwers, S.P., Simmler, M., Savary, P., Scriba, M.F.: Towards a novel method for detecting atypical lying down and standing up behaviors in dairy cows using accelerometers and machine learning. Smart Agric. Technol. 4 (2023). https://doi.org/10.1016/j.atech.2023.100199

  5. Cabezas, J., et al.: Analysis of accelerometer and GPS data for cattle behaviour identification and anomalous events detection. Entropy 24 (2022). https://doi.org/10.3390/e24030336

  6. Chang, A.Z., Fogarty, E.S., Moraes, L.E., García-Guerra, A., Swain, D.L., Trotter, M.G.: Detection of rumination in cattle using an accelerometer ear-tag: a comparison of analytical methods and individual animal and generic models. Comput. Electron. Agric. 192, 106595 (2022). https://www.sciencedirect.com/science/article/pii/S0168169921006128

  7. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. KDD ’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939785

  8. Cox, D.R.: The regression analysis of binary sequences. J. Roy. Stat. Soc.: Ser. B (Methodol.) 20(2), 215–232 (1958)

    MathSciNet  MATH  Google Scholar 

  9. Ho, T.K.: Random decision forests. In: Proceedings of 3rd international conference on document analysis and recognition, vol. 1, pp. 278–282. IEEE (1995)

    Google Scholar 

  10. King, M., LeBlanc, S., Pajor, E., Wright, T., DeVries, T.: Behavior and productivity of cows milked in automated systems before diagnosis of health disorders in early lactation. J. Dairy Sci. 101(5), 4343–4356 (2018). https://doi.org/10.3168/jds.2017-13686

  11. Leliveld, L.M., Riva, E., Mattachini, G., Finzi, A., Lovarelli, D., Provolo, G.: Dairy cow behavior is affected by period, time of day and housing. Animals 12 (2022). https://doi.org/10.3390/ani12040512

  12. Montes, M.E., et al.: Relationship between body temperature and behavior of nonpregnant early-lactation dairy cows (2023)

    Google Scholar 

  13. Paudyal, S.: Using rumination time to manage health and reproduction in dairy cattle: a review. Vet. Q. 41, 292–300 (2021). https://doi.org/10.1080/01652176.2021.1987581

    Article  Google Scholar 

  14. Turner, L., Udal, M., Larson, B., Shearer, S.: Monitoring cattle behavior and pasture use with GPS and GIS (2000)

    Google Scholar 

  15. Weerd, N.D., et al.: Deriving animal behaviour from high-frequency GPS: Tracking cows in open and forested habitat. PLoS ONE 10 (2015). https://doi.org/10.1371/journal.pone.0129030

  16. Williams, L.R., Fox, D.R., Bishop-Hurley, G.J., Swain, D.L.: Use of radio frequency identification (RFID) technology to record grazing beef cattle water point use. Comput. Electron. Agric. 156, 193–202 (2019). https://www.sciencedirect.com/science/article/pii/S0168169918306707

  17. Wolhuter, R., Petrus, S., Roux, L., Marais, J., Niesler, T.: Automatic classification of sheep behaviour using 3-axis accelerometer data cough detection view project automatic real-time animal behaviour classification view project automatic classification of sheep behaviour using 3-axis accelerometer data (2014). https://www.researchgate.net/publication/319331093

  18. Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niken Prasasti Martono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martono, N.P., Sawado, R., Nonaka, I., Terada, F., Ohwada, H. (2023). Automated Cattle Behavior Classification Using Wearable Sensors and Machine Learning Approach. In: Wu, S., Yang, W., Amin, M.B., Kang, BH., Xu, G. (eds) Knowledge Management and Acquisition for Intelligent Systems. PKAW 2023. Lecture Notes in Computer Science(), vol 14317. Springer, Singapore. https://doi.org/10.1007/978-981-99-7855-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7855-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7854-0

  • Online ISBN: 978-981-99-7855-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics