Skip to main content

Step and Save: A Wearable Technology Based Incentive Mechanism for Health Insurance

  • Conference paper
  • First Online:
Advanced Parallel Processing Technologies (APPT 2023)

Abstract

The market of wearables are growing explosively for the past few years. The majority of the devices are related to health care and fitness. It is embarrassing that users easily lose interest in these devices, and thus fail to improve health condition. Recently, the “be healthy and be rewarded” programs are gaining popularity in health insurance market. The insurance companies give financial rewards to its policyholders who take the initiative to keep healthy. It provides the policyholders with incentives to lead a healthier lifestyle and the insurer can also benefit from less medical claims. Unfortunately, there are hardly any studies discussing how to design the incentive mechanism in this new emerging health promotion program. Improper design would not change policyholders’ unhealthy behavior and the insurer cannot benefit from it. In this paper, we propose a mechanism for this health promotion program. We model it as a monopoly market using contract theory, in which there is one insurer and many policyholders. We theoretically analyze how all parties would behave in this program. We propose a design that can guarantee that policyholders would faithfully participate in the program and the insurer can maximize its profit. Simulation results show that the insurer can improve its profit by \(40\%\) using the optimal contract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AIA vitality. https://www.aiavitality.com.sg/memberportal/partners/fitbit

  2. Fitbit. https://www.fitbit.com/

  3. Health expenditure, total (% of GDP). https://data.worldbank.org

  4. Manulife. https://www.manulifemove.hk/en/gift/

  5. Bolton, P., Dewatripont, M.: Contract Theory. MIT Press, Cambridge (2005)

    Google Scholar 

  6. Cisco, Cisco Customer Experience Research - Automotive Industry Global Data (2013)

    Google Scholar 

  7. Cornelius, C., Peterson, R., Skinner, J., Halter, R., Kotz, D.: A wearable system that knows who wears it. In: MobiSys 2014, pp. 55–67. ACM (2014)

    Google Scholar 

  8. Duan, L., Gao, L., Huang, J.: Cooperative spectrum sharing: a contract-based approach. IEEE Trans. Mob. Comput. 13(1), 174–187 (2014)

    Article  Google Scholar 

  9. Duan, L., Kubo, T., Sugiyama, K., Huang, J., Hasegawa, T., Walrand, J.: Incentive mechanisms for smartphone collaboration in data acquisition and distributed computing. In: INFOCOM 2012 (2012)

    Google Scholar 

  10. Duncan, I.: Managing and Evaluating Healthcare Intervention Programs. Actex Publications (2014)

    Google Scholar 

  11. Duncan, I.G.: Healthcare Risk Adjustment and Predictive Modeling. Actex Publications (2011)

    Google Scholar 

  12. Feng, X., Zhang, Q., Zhang, J.: Hybrid pricing for TV white space database. In: INFOCOM 2013 (2013)

    Google Scholar 

  13. Finkelstein, E.A., Brown, D.S., Brown, D.R., Buchner, D.M.: A randomized study of financial incentives to increase physical activity among sedentary older adults. Prev. Med. 47(2), 182–187 (2008)

    Article  Google Scholar 

  14. Gao, L., Wang, X., Xu, Y., Zhang, Q.: Spectrum trading in cognitive radio networks: a contract-theoretic modeling approach. IEEE J. Sel. Areas Commun. 29(4), 843–855 (2011)

    Article  Google Scholar 

  15. Gong, L., et al.: Experiences of landing machine learning onto market-scale mobile malware detection. In: Proceedings of the Fifteenth European Conference on Computer Systems, pp. 1–14 (2020)

    Google Scholar 

  16. Hayward, J., Chansin, G., Zervos, H.: Wearable Technology 2016–2026-Markets, players and 10-year forecasts (2016)

    Google Scholar 

  17. IBM, Greater expectations: consumers are asking for tomorrow, today (2014)

    Google Scholar 

  18. Ledger, D., McCaffrey, D.: Inside wearables: how the science of human behavior change offers the secret to long-term engagement. In: Endeavour Partners, Cambridge, MA, USA (2014)

    Google Scholar 

  19. Parate, A., Chiu, M.-C., Chadowitz, C., Ganesan, D., Kalogerakis, E.: RisQ: recognizing smoking gestures with inertial sensors on a wristband. In: MobiSys 2014 (2014)

    Google Scholar 

  20. Ren, Y., Chen, Y., Chen, Y., Chuah, M.C.: User verification leveraging gait recognition for smartphone enabled mobile healthcare systems. IEEE Trans. Mob. Comput. 14, 1961–1974 (2015)

    Article  Google Scholar 

  21. Sutherland, K., Christianson, J.B., Leatherman, S.: Impact of targeted financial incentives on personal health behavior a review of the literature. Med. Care Res. Rev. 65(6 suppl), 36S-78S (2008)

    Article  Google Scholar 

  22. Tudor-Locke, C., Bassett, D.R., Jr.: How many steps/day are enough? Sports Med. 34(1), 1–8 (2004). https://doi.org/10.2165/00007256-200434010-00001

    Article  Google Scholar 

  23. Wen, C.P., et al.: Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. The Lancet 378(9798), 1244–1253 (2011)

    Article  Google Scholar 

  24. Zhang, J., Zhang, Q., Wang, Y., Qiu, C.: A real-time auto-adjustable smart pillow system for sleep apnea detection and treatment. In: IPSN 2013 (2013)

    Google Scholar 

Download references

Acknowledgements

This research is supported in part by the Key-Area Research and Development Program of Guangdong Province (No. 2020B0101390001) and in part by the National Natural Science Foundation of China (No. 62002150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianyi Huang .

Editor information

Editors and Affiliations

A Appendices

A Appendices

1.1 A.1 Supplementary Proof for Lemma 5

Here we provide supplementary proof for Lemma 5. As \(i\le k-1\), \(t_{k-1}\ge t_i\).

To prove that

$$\begin{aligned} {} & {} \quad u_0\left[ \theta _{k},\max (t_{k-1},S^e_k)\right] +u_0\left[ \theta _{k-1},\max \left( t_{i},S_{k-1}^e\right) \right] \nonumber \\ {} & {} \quad -u_0(\theta _{k-1},t_{k-1})\nonumber \\ {} & {} \ge u_0\left[ \theta _{k},\max \left( t_{i},S_{k}^e\right) \right] , \nonumber \end{aligned}$$

we distinguish five cases:

Case 1: \(t_{i}\ge S^e_{k}>S_{k-1}^e\).

$$\begin{aligned} &u_0\left( \theta _{k},t_{k-1}\right) +u_0\left( \theta _{k-1},t_{i}\right) -u_0(\theta _{k-1},t_{k-1}) &\ge u_0\left( \theta _k,t_i\right) .\nonumber \end{aligned}$$

The inequality follows from Lemma 3.

Case 2: \(S_{k-1}^e \le t_{i}< S^e_{k}\) and \(t_{k-1}\ge S^e_{k}\).

$$\begin{aligned} {} & {} \quad u_0\left( \theta _{k},t_{k-1}\right) +u_0\left( \theta _{k-1},t_{i}\right) -u_0(\theta _{k-1},t_{k-1})\nonumber \\ {} & {} \ge u_0\left( \theta _{k},t_{k-1}\right) +u_0\left( \theta _{k-1},S_{k}^e\right) -u_0(\theta _{k-1},t_{k-1})\nonumber \\ {} & {} \ge u_0\left( \theta _k,S_{k}^e\right) .\nonumber \end{aligned}$$

The first inequality holds because \(u_0(\theta _{k-1},t)\) is decreasing when \(t>S^e_{k-1}\).

Case 3: \(S_{k-1}^e \le t_{i}< S^e_{k}\) and \(t_{k-1}< S^e_{k}\).

$$\begin{aligned} u_0\left( \theta _{k},S^e_k\right) +u_0\left( \theta _{k-1},t_i\right) -u_0(\theta _{k-1},t_{k-1}) \ge u_0\left( \theta _k,S^e_k\right) .\nonumber \end{aligned}$$

The inequality holds because \(u_0(\theta _{k-1},t)\) is decreasing when \(t>S^e_{k-1}\), and then \(u_0\left( \theta _{k-1},t_i\right) >u_0(\theta _{k-1},t_{k-1})\).

Case 4: \(t_{i}<S^e_{k-1}\) and \(t_{k-1}\ge S^e_{k}\).

$$\begin{aligned} {} & {} \quad u_0\left( \theta _{k},t_{k-1}\right) +u_0\left( \theta _{k-1},S^e_{k-1}\right) -u_0(\theta _{k-1},t_{k-1})\nonumber \\ {} & {} \ge u_0\left( \theta _{k},t_{k-1}\right) +u_0\left( \theta _{k-1},S^e_{k}\right) -u_0(\theta _{k-1},t_{k-1})\nonumber \\ {} & {} \ge u_0\left( \theta _k,S^e_{k}\right) .\nonumber \end{aligned}$$

The first inequality holds because \(u_0(\theta _{k-1},t)\) is decreasing when \(t>S^e_{k-1}\).

Case 5: \(t_{i}<S^e_{k-1}\) and \(t_{k-1}< S^e_{k}\).

$$\begin{aligned} u_0\left( \theta _{k},S^e_{k}\right) +u_0\left( \theta _{k-1},S^e_{k-1}\right) -u_0(\theta _{k-1},t_{k-1}) \ge u_0\left( \theta _k,S^e_{k}\right) .\nonumber \end{aligned}$$

The inequality holds because \(u_0(\theta _{k-1},t)\) is increasing when \(t<S^e_{k-1}\).

In summary, type-\(\theta _k\) PHs always prefer \(\pi _k\) over \(\pi _i\).

Next, we show that \(A\le B\).

If \(t_{j-1}>S_j^e\),

$$\begin{aligned} {} & {} A = \frac{1}{I}\left[ u_0(\theta _{j},t_{j-1})-u_0(\theta _{j},t_{j})\right] \nonumber \\ {} & {} \le \frac{1}{I}\left[ u_0(\theta _{j-1},t_{j-1})-u_0(\theta _{j-1},t_{j})\right] =B. \nonumber \end{aligned}$$

The inequality follows from Lemma 3.

If \(t_{j-1}\le S_j^e\),

$$\begin{aligned} {} & {} B = \frac{1}{I}\left[ u_0(\theta _{j-1},t_{j-1})-u_0(\theta _{j-1},t_{j})\right] \nonumber \\ {} & {} \quad \ge \frac{1}{I}\left[ u_0(\theta _{j-1},S_j^e)-u_0(\theta _{j-1},t_{j})\right] \ge A. \nonumber \end{aligned}$$

1.2 A.2 Prove the Concavity of \(f_i(t_i)\)

Prove that

$$\begin{aligned} f_i(t_i) = \left\{ \begin{array}{ll} f_i^1(t_i) &{} \text {if }t_i<S^e_{i+1},\\ f_i^2(t_i) &{} \text {otherwise,} \end{array} \right. \end{aligned}$$

is a concave function.

Proof

For \({f_i^1}''<0\) and \({f_i^2}''<0\), \({f_i^1}'(t_i)\) and \({f_i^2}'(t_i)\) is decreasing. Furthermore, \(f_i^1(S^e_{i+1})=f_i^2(S^e_{i+1})\) and \({f_i^1}'(S^e_{i+1})={f_i^2}'(S^e_{i+1})\). But \({f_i^1}''(S^e_{i+1})\ne {f_i^2}''(S^e_{i+1})\). Thus, \(f_i'(t_i)\) is defined but \(f_i''(t_i)\) is undefined when \(t_i=S^e_{i+1}\).

To show that \(f_i(t)\) is concave, we need to show that \(\forall x_1,x_2\) and \(\forall \lambda \in [0,1]\),

$$\lambda f_i\left( x_1\right) +(1-\lambda ) f_i\left( x_2\right) \le f_i\left( \lambda x_1+(1-\lambda )x_2 \right) .$$

Without loss of generality, we assume that \(x_1\le x_2\). We distinguish four cases:

Case 1: \(x_1<S^e_{i+1}\) and \(x_2<S^e_{i+1}\).

It is intuitive because \(f_i^1\) is concave.

Case 2: \(x_1\ge S^e_{i+1}\) and \(x_2\ge S^e_{i+1}\).

It is also intuitive because \(f_i^2\) is concave.

Case 3: \(x_1< S^e_{i+1}\), \(x_2\ge S^e_{i+1}\) and \( \lambda x_1+(1-\lambda )x_2<S^e_{i+1}\).

We write \(x_0=\lambda x_1+(1-\lambda )x_2\). Then,

$$x_1-x_0=(\lambda -1)(x_2-x_1), x_2-x_0=\lambda (x_2-x_1).$$
$$\begin{aligned} {} & {} \lambda f_i\left( x_1\right) +(1-\lambda ) f_i\left( x_2\right) -f_i\left( x_0 \right) \nonumber \\ = & {} \lambda \left[ f_i^1\left( x_1\right) - f_i^1\left( x_0\right) \right] +(\lambda -1) \left[ f_i^1\left( x_0\right) -f_i^1(S^e_{i+1})\right] \nonumber \\ {} & {} +(\lambda -1) \left[ f_i^2(S^e_{i+1})-f_i^2\left( x_2\right) \right] \nonumber \\ = & {} \lambda {f_i^1}'(a)(x_1-x_0) +(\lambda -1) {f_i^1}'(b)(x_0-S^e_{i+1}) \nonumber \\ {} & {} +(\lambda -1){f_i^2}'(c)(S^e_{i+1}-x_2)\nonumber \\ = & {} (\lambda -1)\left[ {f_i^1}'(a)-{f_i^2}'(c) \right] (x_2-S_{i+1}^e)\nonumber \\ {} & {} +(\lambda -1)\left[ {f_i^1}'(a)-{f_i^1}'(b) \right] (S_{i+1}^e-x_0).\nonumber \end{aligned}$$

According to Mean Value Theorem, \(a\in \left[ x_1,x_0\right] \), \(b\in \left[ x_0,S^e_{i+1}\right] \), and \(c\in \left[ S^e_{i+1},x_2\right] \). Because \({f_i^1}'(t)\) and \({f_i^2}'(t)\) is decreasing, \({f_i^1}'(a)\ge {f_i^1}'(b)\ge {f_i^1}'(S^e_{i+1})={f_i^2}'(S^e_{i+1})\ge {f_i^2}'(c)\). Furthermore, we have \(x_2\ge S^e_{i+1}>x_0\) and \(\lambda \le 1\). Thus,

$$\lambda f_i\left( x_1\right) +(1-\lambda ) f_i\left( x_2\right) -f_i\left( x_0 \right) \le 0,$$

meaning that \(f_i(t)\) s.t. the condition for concavity in this case.

Case 4: \(x_1< S^e_{i+1}\), \(x_2\ge S^e_{i+1}\) and \( \lambda x_1+(1-\lambda )x_2\ge S^e_{i+1}\).

We note that \(f_i^2(t)\ge f_i^1(t)\) always holds. Thus,

$$\begin{aligned} {} & {} \quad \lambda f_i\left( x_1\right) +(1-\lambda ) f_i\left( x_2\right) -f_i\left( x_0 \right) \nonumber \\ {} & {} =\lambda f_i^1\left( x_1\right) +(1-\lambda ) f_i^2\left( x_2\right) -f_i^2\left( x_0 \right) \nonumber \\ {} & {} \le \lambda f_i^2\left( x_1\right) +(1-\lambda ) f_i^2\left( x_2\right) -f_i^2\left( x_0 \right) \nonumber \\ {} & {} \le 0.\nonumber \end{aligned}$$

The last line follows because \(f_i^2\) is concave.

Therefore, we prove that \(f_i(t_i)\) is a concave function.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Q., Wang, W., Zhang, Q. (2024). Step and Save: A Wearable Technology Based Incentive Mechanism for Health Insurance. In: Li, C., Li, Z., Shen, L., Wu, F., Gong, X. (eds) Advanced Parallel Processing Technologies. APPT 2023. Lecture Notes in Computer Science, vol 14103. Springer, Singapore. https://doi.org/10.1007/978-981-99-7872-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7872-4_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7871-7

  • Online ISBN: 978-981-99-7872-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics