Skip to main content

Multi-agent Cooperative Computing Resource Scheduling Algorithm for Periodic Task Scenarios

  • Conference paper
  • First Online:
Advanced Parallel Processing Technologies (APPT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14103))

Included in the following conference series:

  • 284 Accesses

Abstract

The scheduling of large-scale service requests and jobs usually requires the service cluster to fully use node computing resources. However, due to the increasing number of server devices, the dependence between resource allocation and request, and the periodic external request received, the scheduling process of edge-oriented service requests is a complicated scientific problem. Existing studies do not take into account the periodic characteristics of service requests in different periods, leading to inaccurate scheduling decisions on external requests. This paper proposes a coordinated Multi-Agent recurrent Actor-Critic, based on a recursive network. CMARAC is used to solve the problem of computing resource allocation for periodic requests in edge computing scenarios. According to different resource information in the server cluster and the status of the task queue, the system state information and historical information are captured and maintained by integrating LSTM, and then the most appropriate service resources are selected by processing them in the Actor-Critic network. Tracking experiments using actual request data show that CMARAC can successfully learn the periodic state between external requests in the face of large-scale service requests. Compared with the baseline, the average throughput rate of the system implemented by CMARAC is improved by 2.1%, and the algorithm convergence rate is improved by 0.69 times. Finally, we optimized the parameters through experiments and determined the best parameter configuration of CMARAC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, R., Lai, J., Zhang, Z., Li, X., Vijayakumar, P., Karuppiah, M.: Privacy-preserving federated learning for internet of medical things under edge computing. IEEE J. Biomed. Health Inform. 27, 854–865 (2022)

    Article  Google Scholar 

  2. Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., Zomaya, A.Y.: Edge intelligence: the confluence of edge computing and artificial intelligence. IEEE Internet Things J. 7(8), 7457–7469 (2020)

    Article  Google Scholar 

  3. Khan, W.Z., Ahmed, E., Hakak, S., Yaqoob, I., Ahmed, A.: Edge computing: a survey. Futur. Gener. Comput. Syst. 97, 219–235 (2019)

    Article  Google Scholar 

  4. Zhang, J., Chen, B., Zhao, Y., Cheng, X., Hu, F.: Data security and privacy-preserving in edge computing paradigm: survey and open issues. IEEE Access 6, 18209–18237 (2018)

    Article  Google Scholar 

  5. Lu, C., Ye, K., Xu, G., Xu, C.Z., Bai, T.: Imbalance in the cloud: an analysis on alibaba cluster trace. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 2884–2892. IEEE (2017)

    Google Scholar 

  6. Tianqing, Z., Zhou, W., Ye, D., Cheng, Z., Li, J.: Resource allocation in IoT edge computing via concurrent federated reinforcement learning. IEEE Internet Things J. 9(2), 1414–1426 (2021)

    Article  Google Scholar 

  7. Houssein, E.H., Gad, A.G., Wazery, Y.M., Suganthan, P.N.: Task scheduling in cloud computing based on meta-heuristics: review, taxonomy, open challenges, and future trends. Swarm Evol. Comput. 62, 100841 (2021)

    Article  Google Scholar 

  8. Farhadi, V., et al.: Service placement and request scheduling for data-intensive applications in edge clouds. IEEE/ACM Trans. Netw. 29(2), 779–792 (2021)

    Article  Google Scholar 

  9. Liu, B., Liu, C., Peng, M.: Resource allocation for energy-efficient MEC in NOMA-enabled massive IoT networks. IEEE J. Sel. Areas Commun. 39(4), 1015–1027 (2020)

    Article  Google Scholar 

  10. Chen, X., Zhu, F., Chen, Z., Min, G., Zheng, X., Rong, C.: Resource allocation for cloud-based software services using prediction-enabled feedback control with reinforcement learning. IEEE Trans. Cloud Comput. 10(2), 1117–1129 (2020)

    Article  Google Scholar 

  11. Wang, R., et al.: Multivariable time series forecasting using model fusion. Inf. Sci. 585, 262–274 (2022)

    Article  Google Scholar 

  12. Chen, Y., Liu, Z., Zhang, Y., Wu, Y., Chen, X., Zhao, L.: Deep reinforcement learning-based dynamic resource management for mobile edge computing in industrial internet of things. IEEE Trans. Industr. Inf. 17(7), 4925–4934 (2020)

    Article  Google Scholar 

  13. Cui, J., Liu, Y., Nallanathan, A.: Multi-agent reinforcement learning-based resource allocation for UAV networks. IEEE Trans. Wirel. Commun. 19(2), 729–743 (2019)

    Article  Google Scholar 

  14. Han, Y., Shen, S., Wang, X., Wang, S., Leung, V.C.: Tailored learning-based scheduling for Kubernetes-oriented edge-cloud system. In: IEEE INFOCOM 2021-IEEE Conference on Computer Communications, pp. 1–10. IEEE (2021)

    Google Scholar 

  15. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  16. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)

  17. Wang, F., Wang, F., Liu, J., Shea, R., Sun, L.: Intelligent video caching at network edge: A multi-agent deep reinforcement learning approach. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 2499–2508. IEEE (2020)

    Google Scholar 

  18. Fei, J., Liu, L.: Real-time nonlinear model predictive control of active power filter using self-feedback recurrent fuzzy neural network estimator. IEEE Trans. Ind. Electron. 69(8), 8366–8376 (2021)

    Article  MathSciNet  Google Scholar 

  19. Funahashi, K., Nakamura, Y.: Approximation of dynamical systems by continuous time recurrent neural networks. Neural Netw. 6(6), 801–806 (1993)

    Google Scholar 

  20. Zheng, H., Lin, F., Feng, X., Chen, Y.: A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 22(11), 6910–6920 (2020)

    Article  Google Scholar 

  21. Hu, J., Jiang, S., Harding, S.A., Wu, H., Liao, S.W.: Rethinking the implementation tricks and monotonicity constraint in cooperative multi-agent reinforcement learning. arXiv preprint arXiv:2102.03479 (2021)

  22. Wang, L., Wang, K., Pan, C., Xu, W., Aslam, N., Hanzo, L.: Multi-agent deep reinforcement learning-based trajectory planning for multi-UAV assisted mobile edge computing. IEEE Trans. Cogn. Commun. Netw. 7(1), 73–84 (2020)

    Article  Google Scholar 

  23. Dorronsoro, B., Bouvry, P.: Improving classical and decentralized differential evolution with new mutation operator and population topologies. IEEE Trans. Evol. Comput. 15(1), 67–98 (2011)

    Article  Google Scholar 

  24. Littman, M.L: Markov games as a framework for multi-agent reinforcement learning. In: Machine Learning Proceedings 1994, pp. 157–163. Elsevier (1994)

    Google Scholar 

  25. Weng, Q., et al.: MLaaS in the wild: workload analysis and scheduling in large-scale heterogeneous GPU clusters. In: 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), pp. 945–960. USENIX Association (2022)

    Google Scholar 

  26. Gao, W., et al.: Deep learning workload scheduling in GPU datacenters: taxonomy, challenges and vision. arXiv preprint arXiv:2205.11913 (2022)

  27. Jena, U., Das, P., Kabat, M.: Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment. J. King Saud Univ.-Comput. Inf. Sci. 34(6), 2332–2342 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruijin Wang or Ting Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Wang, R., Zhang, Z., Chen, T., Pei, X., Wu, Z. (2024). Multi-agent Cooperative Computing Resource Scheduling Algorithm for Periodic Task Scenarios. In: Li, C., Li, Z., Shen, L., Wu, F., Gong, X. (eds) Advanced Parallel Processing Technologies. APPT 2023. Lecture Notes in Computer Science, vol 14103. Springer, Singapore. https://doi.org/10.1007/978-981-99-7872-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7872-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7871-7

  • Online ISBN: 978-981-99-7872-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics