Abstract
Micro-execution dependence graphs model the program execution on a microprocessor as relationships of micro-execution events intra- and inter-instructions for performance analysis. Each instruction constitutes a motif whose structure is defined by the dependence graph model. With the size of the application increasing dramatically, storing a large-scale dependence graph with billions of instructions becomes difficult. However, popular graph storage formats, such as CSR and CSC, are inefficient for motifs. And the current motif-based compression methods involve the time-consuming process of subgraph isomorphism checking, which is NP-hard. To reduce redundancy, we propose a novel motif-based lossless storage format called compressed common subgraph (CCS) for micro-execution dependence graphs. The key idea is to divide the graph into the intra- and inter-motif parts and compress the common subgraph structures in the intra-motif part by storing the same structures only once. Our method avoids subgraph isomorphism checking because the motifs (instructions) are regularly arranged. Furthermore, the CCS format has two variant implementations, compressed common single subgraph (CCSS) and compressed common multiple subgraphs (CCMS) to adapt to various dependence graph models. Experimental results show that our CCSS and CCMS formats use 16.66% and 8.67% less memory size than the CSC graph format, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–461 (2007). https://doi.org/10.1038/nrg2102
Besta, M., Hoefler, T.: Survey and taxonomy of lossless graph compression and space-efficient graph representations. CoRR abs/1806.01799 (2018). http://arxiv.org/abs/1806.01799
Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In: Proceedings of the 13th International Conference on World Wide Web, WWW 2004, pp. 595–602. Association for Computing Machinery, New York, NY, USA (2004). https://doi.org/10.1145/988672.988752
Boldi, P., Santini, M., Vigna, S.: Permuting web and social graphs. Internet Math. 6(3), 257–283 (2009). https://doi.org/10.1080/15427951.2009.10390641
Bouritsas, G., Loukas, A., Karalias, N., Bronstein, M.M.: Partition and code: learning how to compress graphs. CoRR abs/2107.01952 (2021). https://arxiv.org/abs/2107.01952
Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web graph compression with communities. In: Najork, M., Broder, A.Z., Chakrabarti, S. (eds.) Proceedings of the International Conference on Web Search and Web Data Mining, WSDM 2008, Palo Alto, California, USA, 11–12 February 2008, pp. 95–106. ACM (2008). https://doi.org/10.1145/1341531.1341547
Fields, B., Bodik, R., Hill, M.: Slack: maximizing performance under technological constraints. In: Proceedings 29th Annual International Symposium on Computer Architecture, pp. 47–58 (2002). https://doi.org/10.1109/ISCA.2002.1003561
Fields, B., Rubin, S., Bodik, R.: Focusing processor policies via critical-path prediction. In: Proceedings 28th Annual International Symposium on Computer Architecture, pp. 74–85 (2001). https://doi.org/10.1109/ISCA.2001.937434
Fields, B., Bodik, R., Hill, M., Newburn, C.: Using interaction costs for microarchitectural bottleneck analysis. In: Proceedings. 36th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-36, pp. 228–239 (2003). https://doi.org/10.1109/MICRO.2003.1253198
Fields, B.A., Bodik, R., Hill, M.D., Newburn, C.J.: Interaction cost and shotgun profiling. ACM Trans. Archit. Code Optim. 1(3), 272–304 (2004). https://doi.org/10.1145/1022969.1022971
Fields, B.A.: Using Criticality to Attack Performance Bottlenecks. Ph.D. thesis, EECS Department, University of California, Berkeley (2006). http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-176.html
Golestani, H., Sen, R., Young, V., Gupta, G.: Calipers: a criticality-aware framework for modeling processor performance. In: Proceedings of the 36th ACM International Conference on Supercomputing, ICS 2022. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3524059.3532390
Karande, C., Chellapilla, K., Andersen, R.: Speeding up algorithms on compressed web graphs. In: Proceedings of the Second ACM International Conference on Web Search and Data Mining, WSDM 2009, pp. 272–281. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/1498759.1498836
Khalili, H., Yahyavi, A., Oroumchian, F.: Web-graph pre-compression for similarity based algorithms. In: Proceedings of the Third International Conference on Modeling, Simulation and Applied Optimization, pp. 20–22 (2009). https://ro.uow.edu.au/dubaipapers/55/
Lowe-Power, J., Ahmad, A.M., Akram, A., Alian, M., Amslinger, R., Andreozzi, M., et al.: The gem5 simulator: version 20.0+. CoRR abs/2007.03152 (2020). https://arxiv.org/abs/2007.03152
Maneth, S., Peternek, F.: Compressing graphs by grammars. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 109–120 (2016). https://doi.org/10.1109/ICDE.2016.7498233
Maneth, S., Peternek, F.: Grammar-based graph compression. Inf. Syst. 76, 19–45 (2018). https://doi.org/10.1016/j.is.2018.03.002
Qin, F., Wang, L., Deng, Y., Wang, Y., Zhao, T.: HMCPA: heuristic method utilizing critical path analysis for design space exploration of superscalar microprocessors. In: Xu, W., Xiao, L., Li, J., Zhang, C., Zhu, Z. (eds.) NCCET 2014. Communications in Computer and Information Science, vol. 491, pp. 20–35. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-45815-0_3
Raghavan, S., Garcia-Molina, H.: Representing web graphs. In: Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405), pp. 405–416 (2003). https://doi.org/10.1109/ICDE.2003.1260809
Saidi, A.G., Binkert, N.L., Reinhardt, S.K., Mudge, T.: Full-system critical path analysis. In: ISPASS 2008 - IEEE International Symposium on Performance Analysis of Systems and software, pp. 63–74 (2008). https://doi.org/10.1109/ISPASS.2008.4510739
Saidi, A.G.: Full-system critical-path analysis and performance prediction. Ph.D. thesis, Department of Computer Science and Engineering, University of Michigan (2009). https://hdl.handle.net/2027.42/62309
Shi, L., Liac, Q., Sun, X., Chen, Y., Lin, C.: Scalable network traffic visualization using compressed graphs. In: 2013 IEEE International Conference on Big Data, pp. 606–612 (2013). https://doi.org/10.1109/BigData.2013.6691629
Singh, S., Awasthi, M.: Memory centric characterization and analysis of spec cpu2017 suite. In: Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering, ICPE 2019, pp. 285–292. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3297663.3310311
Tanimoto, T., Ono, T., Inoue, K.: Dependence graph model for accurate critical path analysis on out-of-order processors. J. Inf. Process. 25, 983–992 (2017). https://doi.org/10.2197/ipsjjip.25.983
Tanimoto, T., Ono, T., Inoue, K., Sasaki, H.: Enhanced dependence graph model for critical path analysis on modern out-of-order processors. IEEE Comput. Archit. Lett. 16(2), 111–114 (2017). https://doi.org/10.1109/LCA.2017.2684813
Wang, J., Huang, Y., Wu, F.X., Pan, Y.: Symmetry compression method for discovering network motifs. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(6), 1776–1789 (2012). https://doi.org/10.1109/TCBB.2012.119
Wang, L., Deng, Y., Gong, R., Shi, W., Luo, L., Wang, Y.: CSMO-DSE: fast and precise application-driven DSE guided by criticality and sensitivity analysis. J. Emerg. Technol. Comput. Syst. 16(2) (2020). https://doi.org/10.1145/3371406
Wang, L., et al.: A scalable and fast microprocessor design space exploration methodology. In: 2015 IEEE 9th International Symposium on Embedded Multicore/Many-core Systems-on-Chip, pp. 33–40 (2015). https://doi.org/10.1109/MCSoC.2015.30
Yang, C.Q., Miller, B.: Critical path analysis for the execution of parallel and distributed programs. In: [1988] Proceedings of the 8th International Conference on Distributed, pp. 366–373 (1988). https://doi.org/10.1109/DCS.1988.12538
Yin, H., Benson, A.R., Leskovec, J., Gleich, D.F.: Local higher-order graph clustering. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017, pp. 555–564. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3097983.3098069
Yu, S., Feng, Y., Zhang, D., Bedru, H.D., Xu, B., Xia, F.: Motif discovery in networks: a survey. Comput. Sci. Rev. 37, 100267 (2020). https://doi.org/10.1016/j.cosrev.2020.100267
Zhang, Y., Wu, B., Liu, Y., L., J.: Local community detection based on network motifs. Tsinghua Sci. Technol. 24(6), 716–727 (2019). https://doi.org/10.26599/TST.2018.9010106
Acknowledgements
This work is supported by the National Key Research and Development Program of China (under Grant 2022YFB3105103).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zheng, Y., Han, C., Zhang, T., Yang, C., Wang, J. (2024). CCS: A Motif-Based Storage Format for Micro-execution Dependence Graph. In: Li, C., Li, Z., Shen, L., Wu, F., Gong, X. (eds) Advanced Parallel Processing Technologies. APPT 2023. Lecture Notes in Computer Science, vol 14103. Springer, Singapore. https://doi.org/10.1007/978-981-99-7872-4_8
Download citation
DOI: https://doi.org/10.1007/978-981-99-7872-4_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-7871-7
Online ISBN: 978-981-99-7872-4
eBook Packages: Computer ScienceComputer Science (R0)