Skip to main content

A Weakly Supervised Deep Learning Model for Alzheimer’s Disease Prognosis Using MRI and Incomplete Labels

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14449))

Included in the following conference series:

  • 508 Accesses

Abstract

Predicting cognitive scores using magnetic resonance imaging (MRI) can aid in the early recognition of Alzheimer’s disease (AD) and provide insights into future disease progression. Existing methods typically ignore the temporal consistency of cognitive scores and discard the subjects with incomplete cognitive scores. In this paper, we propose a Weakly supervised Alzheimer’s Disease Prognosis (WADP) model that incorporates an image embedding network and a label embedding network to predict cognitive scores using baseline MRI and incomplete cognitive scores. The image embedding network is an attention consistency regularized network to project MRI into the image embedding space and output the cognitive scores at multiple time-points. The attention consistency regularization captures the correlations among time-points by encouraging the attention maps at different time-points to be similar. The label embedding network employs a denoising autoencoder to embed cognitive scores into the label embedding space and impute missing cognitive scores. This enables the utilization of subjects with incomplete cognitive scores in the training process. Moreover, a relation alignment module is incorporated to make the relationships between samples in the image embedding space consistent with those in the label embedding space. The experimental results on two ADNI datasets show that WADP outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adak, S., et al.: Predicting the rate of cognitive decline in aging and early Alzheimer disease. Neurology 63(1), 108–114 (2014)

    Article  Google Scholar 

  2. Aderghal, K., Khvostikov, A., Krylov, A., Benois-Pineau, J., Afdel, K., Catheline, G.: Classification of Alzheimer disease on imaging modalities with deep CNNs using cross-modal transfer learning. In: IEEE International Symposium on Computer-Based Medical Systems (CBMS), pp. 345–354. IEEE (2018)

    Google Scholar 

  3. Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007)

    Article  Google Scholar 

  4. Association, A.: 2020 Alzheimer’s disease facts and figures. Alzheimers Dement. 16(3), 391–460 (2020)

    Article  Google Scholar 

  5. Bass, C., et al.: ICAM-Reg: interpretable classification and regression with feature attribution for mapping neurological phenotypes in individual scans. IEEE Trans. Med. Imaging 42(4), 959–970 (2023)

    Article  Google Scholar 

  6. Bobholz, J.H., Brandt, J.: Assessment of cognitive impairment: relationship of the dementia rating scale to the mini-mental state examination. J. Geriatr. Psychiatry Neurol. 6(4), 210–213 (1993)

    Article  Google Scholar 

  7. Dinomais, M., Celle, S., Duval, G.T., Roche, F., Bartha, R., Beauchet, O.: Anatomic correlation of the mini-mental state examination: a voxel-based morphometric study in older adults. PLoS ONE 11(10), e0162889 (2016)

    Article  Google Scholar 

  8. Dong, A., Toledo, J.B., Honnorat, N., Doshi, J., Varol, E., Sotiras, A., et al.: Heterogeneity of neuroanatomical patterns in prodromal Alzheimer’s disease: links to cognition, progression and biomarkers. Brain 140(3), 735–747 (2017)

    Google Scholar 

  9. Folstein, M.F., Folstein, S.E., McHugh, P.R.: Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12(3), 189–198 (1975)

    Google Scholar 

  10. Gu, P., Xu, X., Luo, Y., Wang, P., Lu, J.: BCN-GCN: a novel brain connectivity network classification method via graph convolution neural network for Alzheimer’s disease. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. LNCS, vol. 13108, pp. 657–668. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92185-9_54

    Chapter  Google Scholar 

  11. Hughes, C.P., Berg, L., Danziger, W.L., Coben, L.A., Martin, R.L.: A new clinical scale for the staging of dementia. Br. J. Psychiatry 140, 566–572 (1982)

    Article  Google Scholar 

  12. Jack, C.R., Jr., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Google Scholar 

  13. Jia, J., Wei, C., Chen, S., Li, F., Tang, Y., Liu, Z., et al.: The cost of Alzheimer’s disease in china and re-estimation of costs worldwide. Alzheimers Dement. 14(4), 483–491 (2018)

    Article  Google Scholar 

  14. Jin, H., Chien, S.P., Meijer, E., Khobragade, P., Lee, J.: Learning from clinical consensus diagnosis in India to facilitate automatic classification of dementia: machine learning study. JMIR Ment. Health 8(5), e27113 (2021)

    Article  Google Scholar 

  15. Landau, S.M., et al.: Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol. Aging 32(7), 1207–1218 (2011)

    Article  Google Scholar 

  16. Lian, C., Liu, M., Wang, L., Shen, D.: Multi-task weakly-supervised attention network for dementia status estimation with structural MRI. IEEE Trans. Neural Networks Learn. Syst. 33(8), 4056–4068 (2022)

    Article  Google Scholar 

  17. Lian, C., Liu, M., Zhang, J., Shen, D.: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 880–893 (2020)

    Google Scholar 

  18. Lin, W., et al.: Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment. Front. Neurosci. 12, 777 (2018)

    Article  Google Scholar 

  19. Liu, M., Tang, J., Yu, W., Jiang, N.: Attention-based 3D ResNet for detection of Alzheimer’s disease process. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. LNCS, vol. 13108, pp. 342–353. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92185-9_28

    Chapter  Google Scholar 

  20. Liu, M., Zhang, J., Adeli, E., Shen, D.: Landmark-based deep multi-instance learning for brain disease diagnosis. Med. Image Anal. 43, 157–168 (2018)

    Article  Google Scholar 

  21. Liu, M., Zhang, J., Adeli, E., Shen, D.: Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis. IEEE Trans. Biomed. Eng. 66(5), 1195–1206 (2019)

    Article  Google Scholar 

  22. Liu, M., Zhang, J., Lian, C., Shen, D.: Weakly supervised deep learning for brain disease prognosis using MRI and incomplete clinical scores. IEEE Trans. Cybern. 50(7), 3381–3392 (2020)

    Google Scholar 

  23. Raghu, M., Zhang, C., Kleinberg, J., Bengio, S.: Transfusion: understanding transfer learning for medical imaging. In: Advances in Neural Information Processing Systems (NIPS), pp. 3342–3352 (2019)

    Google Scholar 

  24. Rosen, W.G., Mohs, R.C., Davis, K.L.: A new rating scale for Alzheimer’s disease. Am. J. Psychiat. 141(11), 1356–1364 (1984)

    Article  Google Scholar 

  25. Shi, Y.X., Wang, D.B., Zhang, M.L.: Partial label learning with gradually induced error-correction output codes. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) ICONIP 2022. LNCS, vol. 13623, pp. 200–211. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-30105-6_17

    Chapter  Google Scholar 

  26. Sluimer, J.D., Vrenken, H., Blankenstein, M.A., Bouwman, F.H., Barkhof, F., van der Flier, W.M.: Whole-brain atrophy rate and CSF biomarker levels in mci and ad: a longitudinal study. Neurobiol. Aging 31(5), 758–764 (2010)

    Article  Google Scholar 

  27. Wang, S., Shen, Y., Chen, W., Xiao, T., Hu, J.: Automatic recognition of mild cognitive impairment from MRI images using expedited convolutional neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 373–380. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4_43

    Chapter  Google Scholar 

  28. Wen, J., et al.: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Med. Image Anal. 63, 1–20 (2020)

    Article  Google Scholar 

  29. Young, A.L., et al.: Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with subtype and stage inference. Nat. Commun. 9(1), 4273 (2018)

    Article  Google Scholar 

  30. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921–2929. IEEE (2016)

    Google Scholar 

  31. Zhu, W., Sun, L., Huang, J., Han, L., Zhang, D.: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI. IEEE Trans. Med. Imaging 40(9), 2354–2366 (2021)

    Article  Google Scholar 

  32. Zhu, X., Suk, H.I., Shen, D.: A novel matrix-similarity based loss function for joint regression and classification in ad diagnosis. Neuroimage 100, 91–105 (2014)

    Article  Google Scholar 

  33. Zhu, X., Suk, H., Wang, L., Lee, S., Shen, D.: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Medical Image Anal. 38, 205–214 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Key R &D Program of China under grant 2019YFC1710300, Yibin Science and Technology Plan Project under grant 2022ZYD10, Key Laboratory of State Administration of Traditional Chinese Medicine for Scientific Research & Industrial Development of Traditional Chinese Medicine Regimen and Health under grant GZ2022009, Key Laboratory of Sichuan Province for Traditional Chinese Medicine Regimen and Health under grant GZ2022009 and the Sichuan Science and Technology Program under grants 2020YFS0283, 2021YJ0184, 2021YFS0152, and 2019YFS0019.

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongguo Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Liu, Y., Zhang, Y., Zhu, J., Li, Q. (2024). A Weakly Supervised Deep Learning Model for Alzheimer’s Disease Prognosis Using MRI and Incomplete Labels. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14449. Springer, Singapore. https://doi.org/10.1007/978-981-99-8067-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8067-3_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8066-6

  • Online ISBN: 978-981-99-8067-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics