Skip to main content

RoBrain: Towards Robust Brain-to-Image Reconstruction via Cross-Domain Contrastive Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14449))

Included in the following conference series:

  • 501 Accesses

Abstract

With the development of neuroimaging technology and deep learning methods, neural decoding with functional Magnetic Resonance Imaging (fMRI) of human brain has attracted more and more attention. Neural reconstruction task, which intends to reconstruct stimulus images from fMRI, is one of the most challenging tasks in neural decoding. Due to the instability of neural signals, trials of fMRI collected under the same stimulus prove to be very different, which leads to the poor robustness and generalization ability of the existing models. In this work, we propose a robust brain-to-image model based on cross-domain contrastive learning. With deep neural network (DNN) features as paradigms, our model can extract features of stimulus stably and generate reconstructed images via DCGAN. Experiments on the benchmark Deep Image Reconstruction dataset show that our method can enhance the robustness of reconstruction significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/KamitaniLab/DeepImageReconstruction.

References

  1. Bandettini, P.A.: Twenty years of functional MRI: the science and the stories. Neuroimage 62(2), 575–588 (2012)

    Article  Google Scholar 

  2. Beauchamp, M.S., et al.: Dynamic stimulation of visual cortex produces form vision in sighted and blind humans. Cell 181(4), 774–783 (2020)

    Article  Google Scholar 

  3. Beliy, R., Gaziv, G., Hoogi, A., Strappini, F., Golan, T., Irani, M.: From voxels to pixels and back: self-supervision in natural-image reconstruction from fMRI. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  5. Fang, T., Qi, Y., Pan, G.: Reconstructing perceptive images from brain activity by shape-semantic GAN. Adv. Neural. Inf. Process. Syst. 33, 13038–13048 (2020)

    Google Scholar 

  6. Fernández, E., et al.: Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex. J. Clin. Invest. 131(23) (2021)

    Google Scholar 

  7. Güçlütürk, Y., Güçlü, U., Seeliger, K., Bosch, S., van Lier, R., van Gerven, M.A.: Reconstructing perceived faces from brain activations with deep adversarial neural decoding. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  10. Mozafari, M., Reddy, L., VanRullen, R.: Reconstructing natural scenes from fMRI patterns using BigBiGAN. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  11. Naselaris, T., Kay, K.N., Nishimoto, S., Gallant, J.L.: Encoding and decoding in fMRI. Neuroimage 56(2), 400–410 (2011)

    Article  Google Scholar 

  12. Nestor, A., Lee, A.C., Plaut, D.C., Behrmann, M.: The face of image reconstruction: progress, pitfalls, prospects. Trends Cogn. Sci. 24(9), 747–759 (2020)

    Article  Google Scholar 

  13. Poldrack, R.A., Farah, M.J.: Progress and challenges in probing the human brain. Nature 526(7573), 371–379 (2015)

    Article  Google Scholar 

  14. Pulvermüller, F., Tomasello, R., Henningsen-Schomers, M.R., Wennekers, T.: Biological constraints on neural network models of cognitive function. Nat. Rev. Neurosci. 22(8), 488–502 (2021)

    Article  Google Scholar 

  15. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  16. Rakhimberdina, Z., Jodelet, Q., Liu, X., Murata, T.: Natural image reconstruction from fMRI using deep learning: a survey. Front. Neurosci. 15, 795488 (2021)

    Article  Google Scholar 

  17. Seeliger, K., Güçlü, U., Ambrogioni, L., Güçlütürk, Y., van Gerven, M.A.: Generative adversarial networks for reconstructing natural images from brain activity. Neuroimage 181, 775–785 (2018)

    Article  Google Scholar 

  18. Shen, G., Dwivedi, K., Majima, K., Horikawa, T., Kamitani, Y.: End-to-end deep image reconstruction from human brain activity. Frontiers in Computational Neuroscience 13, 21 (2019)

    Article  Google Scholar 

  19. Shen, G., Horikawa, T., Majima, K., Kamitani, Y.: Deep image reconstruction from human brain activity. PLoS Comput. Biol. 15(1), e1006633 (2019)

    Article  Google Scholar 

  20. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  21. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  22. Ye, H., Yang, X., Takac, M., Sunderraman, R., Ji, S.: Improving text-to-image synthesis using contrastive learning. arXiv preprint arXiv:2107.02423 (2021)

  23. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R &D Program of China 2022ZD0116500; in part by the National Natural Science Foundation of China under Grant 62206284, Grant 62020106015 and Grant 82272072; and in part by the Beijing Natural Science Foundation under Grant J210010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiguang He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, C., Du, C., He, H. (2024). RoBrain: Towards Robust Brain-to-Image Reconstruction via Cross-Domain Contrastive Learning. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14449. Springer, Singapore. https://doi.org/10.1007/978-981-99-8067-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8067-3_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8066-6

  • Online ISBN: 978-981-99-8067-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics