Skip to main content

Correlated Online k-Nearest Neighbors Regressor Chain for Online Multi-output Regression

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14449))

Included in the following conference series:

  • 449 Accesses

Abstract

Online multi-output regression is a crucial task in machine learning with applications in various domains such as environmental monitoring, energy efficiency prediction, and water quality prediction. This paper introduces CONNRC, a novel algorithm designed to address online multi-output regression challenges and provide accurate real-time predictions. CONNRC builds upon the k-nearest neighbor algorithm in an online manner and incorporates a relevant chain structure to effectively capture and utilize correlations among structured multi-outputs. The main contribution of this work lies in the potential of CONNRC to enhance the accuracy and efficiency of real-time predictions across diverse application domains. Through a comprehensive experimental evaluation on six real-world datasets, CONNRC is compared against five existing online regression algorithms. The consistent results highlight that CONNRC consistently outperforms the other algorithms in terms of average Mean Absolute Error, demonstrating its superior accuracy in multi-output regression tasks. However, the time performance of CONNRC requires further improvement, indicating an area for future research and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 249–260. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03915-7_22

    Chapter  Google Scholar 

  2. Blum, A., Kalai, A., Langford, J.: Beating the hold-out: bounds for K-fold and progressive cross-validation. In: Ben-David, S., Long, P.M. (eds.) Proceedings of the Twelfth Annual Conference on Computational Learning Theory, COLT 1999, Santa Cruz, CA, USA, 7–9 July 1999, pp. 203–208. ACM (1999). https://doi.org/10.1145/307400.307439

  3. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Duarte, J., Gama, J.: Multi-target regression from high-speed data streams with adaptive model rules. In: 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015, Campus des Cordeliers, Paris, France, 19–21 October 2015, pp. 1–10. IEEE (2015). https://doi.org/10.1109/DSAA.2015.7344900

  5. Duarte, J., Gama, J., Bifet, A.: Adaptive model rules from high-speed data streams. ACM Trans. Knowl. Discov. Data 10(3), 30:1–30:22 (2016). https://doi.org/10.1145/2829955

  6. Dzeroski, S., Demsar, D., Grbovic, J.: Predicting chemical parameters of river water quality from bioindicator data. Appl. Intell. 13(1), 7–17 (2000). https://doi.org/10.1023/A:1008323212047

    Article  Google Scholar 

  7. Gama, J.: Knowledge Discovery from Data Streams. CRC Press (2010)

    Google Scholar 

  8. Gouk, H., Pfahringer, B., Frank, E.: Stochastic gradient trees. In: Lee, W.S., Suzuki, T. (eds.) Proceedings of The 11th Asian Conference on Machine Learning, ACML 2019, 17–19 November 2019, Nagoya, Japan. Proceedings of Machine Learning Research, vol. 101, pp. 1094–1109. PMLR (2019)

    Google Scholar 

  9. Groves, W., Gini, M.: Improving prediction in TAC SCM by integrating multivariate and temporal aspects via PLS regression. In: David, E., Robu, V., Shehory, O., Stein, S., Symeonidis, A. (eds.) AMEC/TADA -2011. LNBIP, vol. 119, pp. 28–43. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34889-1_3

    Chapter  Google Scholar 

  10. Hatzikos, E.V., Tsoumakas, G., Tzanis, G., Bassiliades, N., Vlahavas, I.P.: An empirical study on sea water quality prediction. Knowl. Based Syst. 21(6), 471–478 (2008). https://doi.org/10.1016/j.knosys.2008.03.005

    Article  Google Scholar 

  11. Li, C., Wei, F., Dong, W., Wang, X., Liu, Q., Zhang, X.: Dynamic structure embedded online multiple-output regression for streaming data. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 323–336 (2019). https://doi.org/10.1109/TPAMI.2018.2794446

    Article  Google Scholar 

  12. Mastelini, S.M., de Leon Ferreira de Carvalho, A.C.P.: Using dynamical quantization to perform split attempts in online tree regressors. Pattern Recognit. Lett. 145, 37–42 (2021). https://doi.org/10.1016/j.patrec.2021.01.033

  13. Melki, G., Cano, A., Kecman, V., Ventura, S.: Multi-target support vector regression via correlation regressor chains. Inf. Sci. 415, 53–69 (2017). https://doi.org/10.1016/j.ins.2017.06.017

    Article  MathSciNet  MATH  Google Scholar 

  14. Montiel, J., et al.: River: machine learning for streaming data in Python. J. Mach. Learn. Res. 22, 110:1–110:8 (2021)

    Google Scholar 

  15. Osojnik, A., Panov, P., Dzeroski, S.: Tree-based methods for online multi-target regression. J. Intell. Inf. Syst. 50(2), 315–339 (2018). https://doi.org/10.1007/s10844-017-0462-7

    Article  Google Scholar 

  16. Pardoe, D., Stone, P.: The 2007 TAC SCM prediction challenge. In: Ketter, W., La Poutré, H., Sadeh, N., Shehory, O., Walsh, W. (eds.) AMEC/TADA -2008. LNBIP, vol. 44, pp. 175–189. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15237-5_13

    Chapter  Google Scholar 

  17. Read, J., Martino, L.: Probabilistic regressor chains with monte Carlo methods. Neurocomputing 413, 471–486 (2020). https://doi.org/10.1016/j.neucom.2020.05.024

  18. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 49, 560–567 (2012)

    Article  Google Scholar 

  19. Wu, Z., Lian, G.: A novel dynamically adjusted regressor chain for taxi demand prediction. In: 2020 International Joint Conference on Neural Networks, IJCNN 2020, Glasgow, United Kingdom, 19–24 July 2020, pp. 1–10. IEEE (2020). https://doi.org/10.1109/IJCNN48605.2020.9207160

  20. Wu, Z., Loo, C.K., Pasupa, K., Xu, L.: An interpretable multi-target regression method for hierarchical load forecasting. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) Neural Information Processing - 29th International Conference, ICONIP 2022, Virtual Event, 22–26 November 2022, Proceedings, Part VII. CCIS, vol. 1794, pp. 3–12. Springer, Singapore (2022). https://doi.org/10.1007/978-981-99-1648-1_1

  21. Xioufis, E.S., Tsoumakas, G., Groves, W., Vlahavas, I.P.: Multi-target regression via input space expansion: treating targets as inputs. Mach. Learn. 104(1), 55–98 (2016). https://doi.org/10.1007/s10994-016-5546-z

    Article  MathSciNet  MATH  Google Scholar 

  22. Yu, H., Lu, J., Liu, A., Wang, B., Li, R., Zhang, G.: Real-time prediction system of train carriage load based on multi-stream fuzzy learning. IEEE Trans. Intell. Transp. Syst. 23(9), 15155–15165 (2022). https://doi.org/10.1109/TITS.2021.3137446

    Article  Google Scholar 

  23. Yu, H., Lu, J., Zhang, G.: MORStreaming: a multioutput regression system for streaming data. IEEE Trans. Syst. Man Cybern. Syst. 52(8), 4862–4874 (2022). https://doi.org/10.1109/TSMC.2021.3102978

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitsuchart Pasupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z., Loo, C.K., Pasupa, K. (2024). Correlated Online k-Nearest Neighbors Regressor Chain for Online Multi-output Regression. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14449. Springer, Singapore. https://doi.org/10.1007/978-981-99-8067-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8067-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8066-6

  • Online ISBN: 978-981-99-8067-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics