Skip to main content

A DNN-Based Learning Framework for Continuous Movements Segmentation

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14449))

Included in the following conference series:

  • 452 Accesses

Abstract

This study presents a novel experimental paradigm for collecting Electromyography (EMG) data from continuous movement sequences and a Deep Neural Network (DNN) learning framework for segmenting movements from these signals. Unlike prior research focusing on individual movements, this approach characterizes human motion as continuous sequences. The DNN framework comprises a segmentation module for time point level labeling of EMG data and a transfer module predicting movement transition time points. These outputs are integrated based on defined rules. Experimental results reveal an impressive capacity to accurately segment movements, evidenced by segmentation metrics (accuracy: \(88.3\%\); Dice coefficient: \(82.9\%\); mIoU: \(72.7\%\)). This innovative approach to time point level analysis of continuous movement sequences via EMG signals offers promising implications for future studies of human motor functions and the advancement of human-machine interaction systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–283 (2016)

    Google Scholar 

  2. van Amsterdam, B., et al.: Gesture recognition in robotic surgery with multimodal attention. IEEE Trans. Med. Imaging 41(7), 1677–1687 (2022)

    Article  Google Scholar 

  3. Blankertz, B., et al.: The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans. Biomed. Eng. 51(6), 1044–1051 (2004)

    Article  Google Scholar 

  4. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  5. Cisnal, A., Pérez-Turiel, J., Fraile, J.C., Sierra, D., de la Fuente, E.: Robhand: a hand exoskeleton with real-time EMG-driven embedded control quantifying hand gesture recognition delays for bilateral rehabilitation. IEEE Access 9, 137809–137823 (2021)

    Article  Google Scholar 

  6. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)

  7. Côté-Allard, U., et al.: Deep learning for electromyographic hand gesture signal classification using transfer learning. IEEE Trans. Neural Syst. Rehabil. Eng. 27(4), 760–771 (2019)

    Article  Google Scholar 

  8. De Luca, C.J., Gilmore, L.D., Kuznetsov, M., Roy, S.H.: Filtering the surface EMG signal: movement artifact and baseline noise contamination. J. Biomech. 43(8), 1573–1579 (2010)

    Article  Google Scholar 

  9. Henin, S., et al.: Learning hierarchical sequence representations across human cortex and hippocampus. Sci. Adv. 7(8), eabc4530 (2021)

    Google Scholar 

  10. Inam, S., et al.: A brief review of strategies used for EMG signal classification. In: Proceedings of 2021 International Conference on Artificial Intelligence (ICAI), pp. 140–145. IEEE (2021)

    Google Scholar 

  11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  12. Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018)

    Article  Google Scholar 

  13. Lee, M.H., et al.: EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. GigaScience 8(5), giz002 (2019)

    Google Scholar 

  14. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  15. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2022). https://doi.org/10.1109/TPAMI.2021.3059968

    Article  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Tieleman, T., Hinton, G., et al.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26–31 (2012)

    Google Scholar 

  20. Voytek, B., et al.: Oscillatory dynamics coordinating human frontal networks in support of goal maintenance. Nat. Neurosci. 18(9), 1318–1324 (2015)

    Article  Google Scholar 

  21. Xiang, T.Y., et al.: Quantitative movement analysis using scaled information implied in monocular videos. IEEE Trans. Med. Rob. Bionics 5, 88–99 (2023). https://doi.org/10.1109/TMRB.2023.3240285

    Article  Google Scholar 

  22. Xiong, D., Zhang, D., Zhao, X., Zhao, Y.: Deep learning for EMG-based human-machine interaction: a review. IEEE/CAA J. Automatica Sinica 8(3), 512–533 (2021)

    Article  Google Scholar 

  23. Zhou, X.H., et al.: Surgical skill assessment based on dynamic warping manipulations. IEEE Trans. Med. Rob. Bionics 4(1), 50–61 (2022)

    Article  MathSciNet  Google Scholar 

  24. Zhou, X.H., et al.: Learning skill characteristics from manipulations. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3160159

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62003343, Grant 62222316, Grant U1913601, Grant 62073325, Grant U20A20224, and Grant U1913210; in part by the Beijing Natural Science Foundation under Grant M22008; in part by the Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) under Grant 2020140; in part by the CIE-Tencent Robotics X Rhino-Bird Focused Research Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Hu Zhou or Zeng-Guang Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiang, Ty. et al. (2024). A DNN-Based Learning Framework for Continuous Movements Segmentation. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14449. Springer, Singapore. https://doi.org/10.1007/978-981-99-8067-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8067-3_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8066-6

  • Online ISBN: 978-981-99-8067-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics