Skip to main content

Evolutionary Computation for Berth Allocation Problems: A Survey

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14449))

Included in the following conference series:

  • 1147 Accesses

Abstract

Berth allocation problem (BAP) is to assign berthing spaces for incoming vessels while considering various constraints and objectives, which is an important optimization problem in port logistics. Evolutionary computation (EC) algorithms are a class of meta-heuristic optimization algorithms that mimic the process of natural evolution and swarm intelligence behaivors to generate and evolve potential solutions to optimization problems. Due to the advantages of strong gobal search capability and robustness, the EC algorithms have gained significant attention in many research fields. In recent years, many studies have successfully applied EC algorithms in solving BAPs and achieved encouraging performance. This paper aims to survey the existing literature on the EC algorithms for solving BAPs. First, this survey introduces two common models of BAPs, which are continuous BAP and discrete BAP. Second, this paper introduces three typical EC algorithms (including genetic algorithm, particle swarm optimization, and ant colony optimization) and analyzes the existing studies of using these EC algorithms to solve BAPs. Finally, this paper analyzes the future research directions of the EC algorithms in solving BAPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rodrigues, F., Agra, A.: Berth allocation and quay crane assignment/scheduling problem under uncertainty: a survey. Eur. J. Oper. Res. 303(2), 501–524 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Martin-Iradi, B., Pacino, D., Ropke, S.: The multiport berth allocation problem with speed optimization: exact methods and a cooperative game analysis. Transp. Sci. 56(4), 972–999 (2022). https://doi.org/10.1287/trsc.2021.1112

    Article  Google Scholar 

  3. Yin, D., Niu, Y., Yang, J., Yu, S.: Static and discrete berth allocation for large-scale marine-loading problem by using iterative variable grouping genetic algorithm. J. Marine Sci. Eng. 10(9), 1294 (2022)

    Article  Google Scholar 

  4. Zhan, Z.H., Shi, L., Tan, K.C., Zhang, J.: A survey on evolutionary computation for complex continuous optimization. Artif. Intell. Rev. 55(1), 59–110 (2022)

    Article  Google Scholar 

  5. Zhan, Z.H., et al.: Matrix-based evolutionary computation. IEEE Trans. Emerg. Top. Comput. Intell. 6(2), 315–328 (2022)

    Article  Google Scholar 

  6. Chen, Z.G., Zhan, Z.H., Kwong, S., Zhang, J.: Evolutionary computation for intelligent transportation in smart cities: a survey. IEEE Comput. Intell. Mag. 17(2), 83–102 (2022)

    Article  Google Scholar 

  7. Holland, J.: Genetic algorithm. Sci. Am. 267(1), 66–83 (1992)

    Article  Google Scholar 

  8. Liu, S., Chen, Z., Zhan, Z.H., Jeon, S., Kwong, S., Zhang, J.: Many-objective job shop scheduling: a multiple populations for multiple objectives-based genetic algorithm approach. IEEE Trans. Cybern. 53(3), 1460–1474 (2023)

    Article  Google Scholar 

  9. Wu, S.H., Zhan, Z.H., Zhang, J.: SAFE: scale-adaptive fitness evaluation method for expensive optimization problems. IEEE Trans. Evol. Comput. 25(3), 478–491 (2021)

    Article  Google Scholar 

  10. Jiang, Y., Zhan, Zi.-H., Tan, K.C., Zhang, Jun: A bi-objective knowledge transfer framework for evolutionary many-task optimization. IEEE Trans. Evol. Comput. 27(5), 1514–1528 (2023). https://doi.org/10.1109/TEVC.2022.3210783

    Article  Google Scholar 

  11. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, Y., Chen, C., Zhan, Z.H., Li, Y., Zhang, J.: Adversarial differential evolution for multimodal optimization problems, In: Proceedings of IEEE Conference on Evolutionary Computation, pp. 1–8. (2022)

    Google Scholar 

  13. Zhan, Z.H., Wang, Z.J., Jin, H., Zhang, J.: Adaptive distributed differential evolution. IEEE Trans. Cybern. 50(11), 4633–4647 (2020)

    Article  Google Scholar 

  14. Jiang, Y., Zhan, Z.H., Tan, K., Zhang, J.: Knowledge learning for evolutionary computation. IEEE Trans. Evol. Comput. (2023).https://doi.org/10.1109/TEVC.2023.3278132

  15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  16. Jian, J., Chen, Z., Zhan, Z.H., Zhang, J.: Region encoding helps evolutionary computation evolve faster: a new solution encoding scheme in particle swarm for large-scale optimization. IEEE Trans. Evol. Comput. 25(4), 779–793 (2021)

    Article  Google Scholar 

  17. Liu, X.F., Zhan, Z.H., Gao, Y., Zhang, J., Kwong, S., Zhang, J.: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization. IEEE Trans. Evol. Comput. 23(4), 587–602 (2019)

    Article  Google Scholar 

  18. Liu, X.-F., Fang, Y., Zhan, Z.-H., Zhang, J.: Strength learning particle swarm optimization for multiobjective multirobot task scheduling. IEEE Trans. Syst. Man Cybern. Syst. 53(7), 4052–4063 (2023). https://doi.org/10.1109/TSMC.2023.3239953

    Article  Google Scholar 

  19. Dorigo, M., Gambardella, L.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  20. Wu, L., Shi, L., Zhan, Z.H., Lai, K., Zhang, J.: A buffer-based ant colony system approach for dynamic cold chain logistics scheduling. IEEE Trans. Emerg. Top. Comput. Intell. 6(6), 1438–1452 (2022)

    Article  Google Scholar 

  21. Shi, L., Zhan, Z.H., Liang, D., Zhang, J.: Memory-based ant colony system approach for multi-source data associated dynamic electric vehicle dispatch optimization. IEEE Trans. Intell. Transp. Syst. 23(10), 17491–17505 (2022)

    Article  Google Scholar 

  22. Jiang, Y., Zhan, Z.H., Tan, K., Zhang, J.: Optimizing niche center for multimodal optimization problems. IEEE Trans. Cybern. 53(4), 2544–2557 (2023)

    Article  Google Scholar 

  23. Li, J.Y., Zhan, Z.H., Zhang, J.: Evolutionary computation for expensive optimization: a survey. Mach. Intell. Res. 19(1), 3–23 (2022)

    Article  Google Scholar 

  24. Jiang, Y., Zhan, Z.H., Tan, K., Zhang, J.: Block-level knowledge transfer for evolutionary multi-task optimization. IEEE Trans. Cybern. (2023). https://doi.org/10.1109/TCYB.2023.3273625

  25. Wang, C., et al.: A scheme library-based ant colony optimization with 2-opt local search for dynamic traveling salesman problem. Comput. Model. Eng. Sci. 135(2), 1209–1228 (2022)

    Google Scholar 

  26. Zhan, Z.H., Li, J.Y., Zhang, J.: Evolutionary deep learning: a survey. Neurocomputing 483, 42–58 (2022)

    Article  Google Scholar 

  27. Karafa, J., Golias, M., Ivey, S., Saharidis, G., Leonardos, N.: The berth allocation problem with stochastic vessel handling times. Int. J. Adv. Manuf. Technol. 65, 473–484 (2013)

    Article  Google Scholar 

  28. Cheong, C., Tan, K., Liu, D., Lin, C.: Multi-objective and prioritized berth allocation in container ports. Ann. Oper. Res. 180(1), 63–103 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Boeh, R., Hanne, T., Dornberger, R.: A comparison of linear rank and tournament for parent selection in a genetic algorithm solving a dynamic travelling salesman problem, In: Proceedings of International Conference on Soft Computing and Machine Intelligence, pp. 97–102. (2022)

    Google Scholar 

  30. Zhu, Y., Yang, Q., Gao, X., Lu, Z.: A ranking weight based roulette wheel selection method for comprehensive learning particle swarm optimization, In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, pp. 1–7 (2022)

    Google Scholar 

  31. Chen, J.C., Cao, M., Zhan, Z.H., Liu, D., Zhang, J.: A new and efficient genetic algorithm with promotion selection operator. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, pp. 1532–1537 (2020)

    Google Scholar 

  32. Agrawal, R., Deb, K., Agrawal, R.: Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  33. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inform. 26(4), 30–45 (1996)

    Google Scholar 

  34. Li, J.Y., Zhan, Z.H., Li, Y., Zhang, J.: Multiple tasks for multiple objectives: a new multiobjective optimization method via multitask optimization. IEEE Trans. Evol. Comput. (2023). https://doi.org/10.1109/TEVC.2023.3294307

    Article  Google Scholar 

  35. Yang, Q.T., Zhan, Z.H., Kwong, S., Zhang, J.: Multiple populations for multiple objectives framework with bias sorting for many-objective optimization. IEEE Trans. Evol. Comput. (2022). https://doi.org/10.1109/TEVC.2022.3212058

    Article  Google Scholar 

  36. Zhan, Z.H., Li, J.Y., Kwong, S., Zhang, J.: Learning-aid evolution for optimization. IEEE Trans. Evol. Comput. (2022). https://doi.org/10.1109/TEVC.2022.3232776

    Article  Google Scholar 

  37. Ganji, S., Babazadeh, A., Arabshahi, N.: Analysis of the continuous berth allocation problem in container ports using a genetic algorithm. J. Mar. Sci. Technol. 15(4), 408–416 (2010)

    Article  Google Scholar 

  38. Chen, L., Huang, Y.: A dynamic continuous berth allocation method based on genetic algorithm. In: Proceedings of IEEE International Conference on Control Science and Systems Engineering, pp. 770–773 (2017)

    Google Scholar 

  39. Li, S., Li, G., Zhu, Y.: Research on continuous berth allocation problem based on genetic-harmony search algorithm. IOP Conf. Ser. Mater. Sci. Eng. 782(3), 032071 (2020)

    Article  Google Scholar 

  40. Hu, X., Ji, S., Hua, H., Zhou, B., Hu, G.: An improved genetic algorithm for berth scheduling at bulk terminal. Comput. Syst. Sci. Eng. 43(3), 1285–1296 (2022)

    Article  Google Scholar 

  41. Ji, B., Huang, H., Yu, S.: An enhanced NSGA-II for solving berth allocation and quay crane assignment problem with stochastic arrival times. IEEE Trans. Intell. Transp. Syst. 24(1), 459–473 (2023)

    Article  Google Scholar 

  42. Tengecha, N., Zhang, X.: An efficient algorithm for the berth and quay crane assignments considering operator performance in container terminal using particle swarm model. J. Marine Sci. Eng. 10(9), 1232 (2022)

    Article  Google Scholar 

  43. Zhu, S., Tan, Z., Yang, Z., Cai, L.: Quay crane and yard truck dual-cycle scheduling with mixed storage strategy. Adv. Eng. Inform. 54, 101722 (2022)

    Article  Google Scholar 

  44. Yang, Y., Yu, H., Zhu, X.: Study of the master bay plan problem based on a twin 40-foot quay crane operation. J. Marine Sci. Eng. 11(4), 807 (2023)

    Article  Google Scholar 

  45. Wang, R., et al.: An adaptive ant colony system based on variable range receding horizon control for berth allocation problem. IEEE Trans. Intell. Transp. Syst. 23(11), 21675–21686 (2022)

    Article  Google Scholar 

  46. Li, B., Jiang, X.: A Joint operational scheme of berths and yards at container terminals with computational logistics and computational intelligence, In: Proceedings of IEEE Int. Conference on Computer Supported Cooperative Work in Design, pp. 1095–1101 (2022)

    Google Scholar 

  47. Sun, X., Qiu, J., Tao, Y., Yi, Y., Zhao, J.: Distributed optimal voltage control and berth allocation of all-electric ships in seaport microgrids. IEEE Trans. Smart Grid 13(4), 2664–2674 (2022)

    Article  Google Scholar 

  48. Jiang, X., Zhong, M., Shi, J., Li, W., Sui, Y., Dou, Y.: Overall scheduling model for vessels scheduling and berth allocation for ports with restricted channels that considers carbon emissions. J. Marine Sci. Eng. 10(11), 1757 (2022)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Key Research and Development Program of China under Grant 2020YFB1710803.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Jiang or Zhi-Hui Zhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, XX., Jiang, Y., Zhang, L., Liu, X., Ding, XQ., Zhan, ZH. (2024). Evolutionary Computation for Berth Allocation Problems: A Survey. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14449. Springer, Singapore. https://doi.org/10.1007/978-981-99-8067-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8067-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8066-6

  • Online ISBN: 978-981-99-8067-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics