Skip to main content

Block-Matching Multi-pedestrian Tracking

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14449))

Included in the following conference series:

  • 1048 Accesses

Abstract

Target association is an extremely important problem in the field of multi-object tracking, especially for pedestrian scenes with high similarity in appearance and dense distribution. The traditional approach of combining IOU and ReID techniques with the Hungarian algorithm only partially addresses these challenges. To improve the model’s matching ability, this paper proposes a block-matching model that extracts local features using a Block Matching Module (BMM) based on the Transformer model. The BMM extracts features by dividing them into blocks and mines effective features of the target to complete target similarity evaluation. Additionally, a Euclidean Distance Module (EDM) based on the Euclidean distance association matching strategy is introduced to further enhance the model’s association ability. By integrating BMM and EDM into the same multi-object tracking model, this paper establishes a novel model called BWTrack that achieves excellent performance on MOT16, MOT17, and MOT20 while maintaining high performance at 7 FPS on a single GPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharon, N., Orfaig, R., Bobrovsky, B.Z.: BoT-SORT: robust associations multi-pedestrian tracking. arXiv preprint arXiv:2206.14651 (2022)

  2. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: ICIP, pp. 3464–3468. IEEE (2016)

    Google Scholar 

  3. Cai, J., et al.: MeMOT: multi-object tracking with memory. In: CVPR, pp. 8090–8100 (2022)

    Google Scholar 

  4. Cao, J., Pang, J., Weng, X., Khirodkar, R., Kitani, K., et al.: Observation-centric sort: rethinking sort for robust multi-object tracking. arXiv preprint arXiv:2203.14360 (2022)

  5. Chu, P., Fan, H., Tan, C.C., Ling, H.: Online multi-object tracking with instance-aware tracker and dynamic model refreshment. In: WACV, pp. 161–170. IEEE (2019)

    Google Scholar 

  6. Dendorfer, P., et al.: MOT20: a benchmark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003 (2020)

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  8. Liang, C., Zhang, Z., Zhou, X., Li, B., Zhu, S., Hu, W.: Rethinking the competition between detection and ReiD in multiobject tracking. TIP, 3182–3196 (2022)

    Google Scholar 

  9. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)

  10. Pang, J., et al.: Quasi-dense similarity learning for multiple object tracking. In: CVPR, pp. 164–173 (2021)

    Google Scholar 

  11. Peng, J., et al.: Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 145–161. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_9

    Chapter  Google Scholar 

  12. Peng, J., et al.: TPM: multiple object tracking with tracklet-plane matching. Pattern Recogn. 107, 107480 (2020)

    Google Scholar 

  13. Shan, C., et al.: Tracklets predicting based adaptive graph tracking. arXiv preprint arXiv:2010.09015 (2020)

  14. Sun, P., et al.: Transtrack: multiple object tracking with transformer. arXiv preprint arXiv:2012.15460 (2020)

  15. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, vol. 30, pp. 6000–6010 (2017)

    Google Scholar 

  16. Wang, T., et al.: Spatio-temporal point process for multiple object tracking. IEEE Trans. Neural Netw. Learn. Syst. 34(4), 1777–1788 (2023)

    Google Scholar 

  17. Xu, Y., Ban, Y., Delorme, G., Gan, C., Rus, D., Alameda-Pineda, X.: TransCenter: transformers with dense queries for multiple-object tracking. arXiv e-prints, arXiv-2103 (2021)

    Google Scholar 

  18. Yang, F., Odashima, S., Masui, S., Jiang, S.: Hard to track objects with irregular motions and similar appearances? Make it easier by buffering the matching space. In: WACV, pp. 4799–4808 (2023)

    Google Scholar 

  19. Yu, F., Li, W., Li, Q., Liu, Yu., Shi, X., Yan, J.: POI: multiple object tracking with high performance detection and appearance feature. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 36–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_3

    Chapter  Google Scholar 

  20. Yu, E., Li, Z., Han, S., Wang, H.: RelationTrack: relation-aware multiple object tracking with decoupled representation. IEEE Trans. Multimedia, 2686–2697 (2021)

    Google Scholar 

  21. Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: MOTR: end-to-end multiple-object tracking with transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV, vol. 13687, pp. 659–675. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_38

  22. Zhang, H., et al.: ResNeSt: split-attention networks. arXiv preprint arXiv:2004.08955 (2020)

  23. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: on the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vis. 129, 3069–3087 (2021)

    Google Scholar 

  24. Zhang, Y., et al.: ByteTrack: multi-object tracking by associating every detection box. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV, vol. 13682, pp. 1–21. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_1

  25. Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: ICCV, pp. 941–951 (2019)

    Google Scholar 

  26. Chaabane, M., Zhang, P., Beveridge, J.R., O’Hara, S.: Deft: detection embeddings for tracking. arXiv preprint arXiv:2102.02267 (2021)

  27. Chu, P., Wang, J., You, Q., Ling, H., Liu, Z.: TransMOT: spatial-temporal graph transformer for multiple object tracking. In: WACV, pp. 4870–4880 (2023)

    Google Scholar 

  28. Emami, P., Pardalos, P.M., Elefteriadou, L., Ranka, S.: Machine learning methods for data association in multi-object tracking. ACM Comput. Surv. (CSUR), 1–34 (2020)

    Google Scholar 

  29. Fang, K., Xiang, Y., Li, X., Savarese, S.: Recurrent autoregressive networks for online multi-object tracking. In: WACV, pp. 466–475. IEEE (2018)

    Google Scholar 

  30. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOx: exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)

  31. Han, S., Huang, P., Wang, H., Yu, E., Liu, D., Pan, X.: MAT: motion-aware multi-object tracking. Neurocomputing 476, 75–86 (2022)

    Article  Google Scholar 

  32. He, L., Liao, X., Liu, W., Liu, X., Cheng, P., Mei, T.: FastReID: a Pytorch toolbox for general instance re-identification. arXiv preprint arXiv:2006.02631 (2020)

  33. Hyun, J., Kang, M., Wee, D., Yeung, D.Y.: Detection recovery in online multi-object tracking with sparse graph tracker. In: WACV, pp. 4850–4859 (2023)

    Google Scholar 

  34. Li, W., Xiong, Y., Yang, S., Xu, M., Wang, Y., Xia, W.: Semi-TCL: semi-supervised track contrastive representation learning. arXiv preprint arXiv:2107.02396 (2021)

  35. Liang, C., Zhang, Z., Zhou, X., Li, B., Hu, W.: One more check: making “fake background” be tracked again. In: AAAI, vol. 36, pp. 1546–1554 (2022)

    Google Scholar 

  36. Mahmoudi, N., Ahadi, S.M., Rahmati, M.: Multi-target tracking using CNN-based features: CNNMTT. Multimedia Tools Appl., 7077–7096 (2019)

    Google Scholar 

  37. Pang, B., Li, Y., Zhang, Y., Li, M., Lu, C.: TubeTK: adopting tubes to track multi-object in a one-step training model. In: CVPR, pp. 6308–6318 (2020)

    Google Scholar 

  38. Seidenschwarz, J., Braso, G., Elezi, I., Leal-Taixe, L.: Simple cues lead to a strong multi-object tracker. arXiv preprint arXiv:2206.04656 (2022)

  39. Stadler, D., Beyerer, J.: Modelling ambiguous assignments for multi-person tracking in crowds. In: WACV, pp. 133–142 (2022)

    Google Scholar 

  40. Tokmakov, P., Li, J., Burgard, W., Gaidon, A.: Learning to track with object permanence. In: ICCV, pp. 10860–10869 (2021)

    Google Scholar 

  41. Wang, Q., Zheng, Y., Pan, P., Xu, Y.: Multiple object tracking with correlation learning. In: CVPR, pp. 3876–3886 (2021)

    Google Scholar 

  42. Wang, Y., Kitani, K., Weng, X.: Joint object detection and multi-object tracking with graph neural networks. In: ICRA, pp. 13708–13715 (2021)

    Google Scholar 

  43. Wang, Z., Zheng, L., Liu, Y., Li, Y., Wang, S.: Towards real-time multi-object tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 107–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_7

    Chapter  Google Scholar 

  44. Wojke, N., Bewley, A.: Deep cosine metric learning for person re-identification. In: WACV, pp. 748–756. IEEE (2018)

    Google Scholar 

  45. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: ICIP, pp. 3645–3649. IEEE (2017)

    Google Scholar 

  46. Wu, J., Cao, J., Song, L., Wang, Y., Yang, M., Yuan, J.: Track to detect and segment: an online multi-object tracker. In: CVPR, pp. 12352–12361 (2021)

    Google Scholar 

  47. Yang, F., Chang, X., Sakti, S., et al.: ReMOT: a model-agnostic refinement for multiple object tracking. Image Vis. Comput. 106, 104091 (2021)

    Google Scholar 

  48. Zheng, L., Tang, M., Chen, Y., Zhu, G., Wang, J., Lu, H.: Improving multiple object tracking with single object tracking. In: CVPR, pp. 2453–2462 (2021)

    Google Scholar 

  49. Zhou, X., Koltun, V., Krähenbühl, P.: Tracking objects as points. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 474–490. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_28

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, C. (2024). Block-Matching Multi-pedestrian Tracking. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14449. Springer, Singapore. https://doi.org/10.1007/978-981-99-8067-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8067-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8066-6

  • Online ISBN: 978-981-99-8067-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics