Skip to main content

On Efficient Federated Learning for Aerial Remote Sensing Image Classification: A Filter Pruning Approach

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14450))

Included in the following conference series:

  • 1004 Accesses

Abstract

To promote the application of federated learning in resource-constraint unmanned aerial vehicle swarm, we propose a novel efficient federated learning framework CALIM-FL, short for Cross-All-Layers Importance Measure pruning-based Federated Learning. In CALIM-FL, an efficient one-shot filter pruning mechanism is intertwined with the standard FL procedure. The model size is adapted during FL to reduce both communication and computation overhead at the cost of a slight accuracy loss. The novelties of this work come from the following two aspects: 1) a more accurate importance measure on filters from the perspective of the whole neural networks; and 2) a communication-efficient one-shot pruning mechanism without data transmission from the devices. Comprehensive experiment results show that CALIM-FL is effective in a variety of scenarios, with a resource overhead saving of 88.4% at the cost of \(1\%\) accuracy loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Device and UAV are interchangeably used in this article.

References

  1. Gong, Y., Liu, L., Yang, M., Bourdev, L.: Compressing deep convolutional networks using vector quantization. arXiv preprint arXiv:1412.6115 (2014)

  2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  3. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: AMC: automl for model compression and acceleration on mobile devices. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 784–800 (2018)

    Google Scholar 

  4. Jiang, Y., et al.: Model pruning enables efficient federated learning on edge devices. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  5. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold: stochastic controlled averaging for federated learning. In: International Conference on Machine Learning, pp. 5132–5143 (2020)

    Google Scholar 

  6. Lee, N.T.A., Torr, P.: SNIP: single-shot network pruning based on connection sensitivity. In: ICLR (2019)

    Google Scholar 

  7. Lee, W.: Federated reinforcement learning-based UAV swarm system for aerial remote sensing. Wirel. Commun. Mob. Comput. 2022 (2022)

    Google Scholar 

  8. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  9. Lin, M., et al.: Hrank: filter pruning using high-rank feature map. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1529–1538 (2020)

    Google Scholar 

  10. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  11. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  12. Ruan, X., Liu, Y., Li, B., Yuan, C., Hu, W.: DPFPS: dynamic and progressive filter pruning for compressing convolutional neural networks from scratch. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2495–2503 (2021)

    Google Scholar 

  13. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  15. Vogels, T., Karimireddy, S.P., Jaggi, M.: PowerSGD: practical low-rank gradient compression for distributed optimization. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  16. Voigt, P., Von dem Bussche, A.: The EU general data protection regulation (GDPR). In: A Practical Guide, 1st edn, vol. 10, no. 3152676, p. 105555 . Springer, Cham (2017)

    Google Scholar 

  17. Wang, H., Qin, C., Bai, Y., Zhang, Y., Fu, Y.: Recent advances on neural network pruning at initialization. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI, Vienna, pp. 23–29 (2022)

    Google Scholar 

  18. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization. Adv. Neural. Inf. Process. Syst. 33, 7611–7623 (2020)

    Google Scholar 

  19. Yoshida, N., Nishio, T., Morikura, M., Yamamoto, K., Yonetani, R.: Hybrid-FL for wireless networks: cooperative learning mechanism using non-IID data. In: ICC 2020–2020 IEEE International Conference On Communications (ICC), pp. 1–7. IEEE (2020)

    Google Scholar 

  20. Zhang, H., Liu, J., Jia, J., Zhou, Y., Dai, H., Dou, D.: FedDUAP: Federated Learning with Dynamic Update and Adaptive Pruning Using Shared Data on the Server. arXiv preprint arXiv:2204.11536 (2022)

Download references

Acknowledgments

This work was supported in part by the National Key Research and Development Program of China (2021YFB3101304), in part by the Natural Science Basic Research Program of Shaanxi (2022JQ-621, 2022JQ-658), in part by the National Natural Science Foundation of China (62001359, 62002278), in part by the Fundamental Research Funds for the Central Universities (ZYTS23163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbo Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, Q., Cao, J., Li, Y., Gao, X., Shangguan, C., Liang, L. (2024). On Efficient Federated Learning for Aerial Remote Sensing Image Classification: A Filter Pruning Approach. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14450. Springer, Singapore. https://doi.org/10.1007/978-981-99-8070-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8070-3_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8069-7

  • Online ISBN: 978-981-99-8070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics