Skip to main content

Learning Stable Nonlinear Dynamical System fromĀ One Demonstration

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14450))

Included in the following conference series:

Abstract

Dynamic systems (DS) methods constitute one of the most commonly employed frameworks for Learning from Demonstration (LfD). The field of LfD aims to enable robots or other agents to learn new skills or behaviors by observing human demonstrations, and DS provide a powerful tool for modeling and reproducing such behaviors. Due to their ability to capture complex and nonlinear patterns of movement, DS have been successfully applied in robotics application. This paper presents a new learning from demonstration method by using the DS. The proposed method ensures that the learned systems achieve global asymptotic stability, a valuable property that guarantees the convergence of the system to an equilibrium point from any initial condition. The original trajectory is initially transformed to a higher-dimensional space and then subjected to a diffeomorphism transformation. This transformation maps the transformed trajectory forward to a straight line that converges towards the zero point. By deforming the trajectories in this way, the resulting system ensures global asymptotic stability for all generated trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ravichandar, H., Polydoros, A.S., Chernova, S.: Recent advances in robot learning from demonstration. Ann. Rev. Control Robot. Auton. Syst. 3(1), 297ā€“330 (2020)

    ArticleĀ  Google ScholarĀ 

  2. Zhang, Y., Cheng, L., Li, H., Cao, R.: Learning accurate and stable point-to-point motions: a dynamic system approach. IEEE Robot. Autom. Lett. 7(2), 1510ā€“1517 (2022)

    ArticleĀ  Google ScholarĀ 

  3. Liu, N., Lu, T., Y, Cai., Wang, R., Wang, S.: Manipulation skill learning on multi-step complex task based on explicit and implicit curriculum learning. Sci. China Inf. Sci. 65, 114201 (2022)

    Google ScholarĀ 

  4. Rozo, L., Calinon, S., Caldwell, D.G., Jimenez, P., Torras, C.: Learning physical collaborative robot behaviors from human demonstrations. IEEE Trans. Robot. 32(3), 513ā€“527 (2016)

    ArticleĀ  Google ScholarĀ 

  5. Zhang, Y., Cheng, L.: Online adaptive and attention-based reference path generation for upper-limb rehabilitation robot. In: China Automation Congress, pp. 5268ā€“5273, Beijing, China (2021)

    Google ScholarĀ 

  6. Khansari-Zadeh, S.M., Billard, A.: Learning stable nonlinear dynamical systems with Gaussian mixture models. IEEE Trans. Robot. 27(5), 943ā€“957 (2011)

    ArticleĀ  Google ScholarĀ 

  7. Kong, L.H., He, W., Chen, W.S., Zhang, H., Wang, Y.: Dynamic movement primitives based robot skills learning. Mach. Intell. Res. 20, 396ā€“407 (2023)

    ArticleĀ  Google ScholarĀ 

  8. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328ā€“373 (2013)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  9. Ginesi, M., Sansonetto, N., Fiorini, P.: Overcoming some drawbacks of dynamic movement primitives. Robot. Auton. Syst. 144, 103844 (2021)

    ArticleĀ  Google ScholarĀ 

  10. Li, C., Li, Z., Jiang, Z., Cui, S., Liu, H., Cai, H.: Autonomous planning and control strategy for space manipulators with dynamics uncertainty based on learning from demonstrations. Sci. China Technol. Sci. 64, 2662ā€“2675 (2021)

    ArticleĀ  Google ScholarĀ 

  11. Neumann, K., Steil, J.J.: Learning robot motions with stable dynamical systems under diffeomorphic transformations. Robot. Auton. Syst. 70, 1ā€“15 (2015)

    ArticleĀ  Google ScholarĀ 

  12. Neumann, K., Lemme, A., Steil, J.J.: Neural learning of stable dynamical systems based on data-driven Lyapunov candidates. In: IEEE International Conference on Intelligent Robots and Systems, pp. 1216ā€“1222, Tokyo, Japan (2013)

    Google ScholarĀ 

  13. Khansari-Zadeh, S.M., Billard, A.: Learning control Lyapunov function to ensure stability of dynamical system-based robot reaching motions. Robot. Auton. Syst. 62(6), 752ā€“765 (2014)

    ArticleĀ  Google ScholarĀ 

  14. Rana, M.A., Li, A., Fox, D., Boots, B., Ramos, F., Ratliff, N.: Euclideanizing flows: diffeomorphic reduction for learning stable dynamical systems. In: 2th International Proceedings on the Conference on Learning for Dynamics and Control, pp. 630ā€“639, Online (2020)

    Google ScholarĀ 

  15. Zhang, Y., Cheng, L., Cao, R., Li, H., Yang, C.: A neural network based framework for variable impedance skills learning from demonstrations. Robot. Auton. Syst. 160, 104312 (2023)

    ArticleĀ  Google ScholarĀ 

  16. Zhang, H., Cheng, L., Zhang, Y.: Learning robust point-to-point motions adversarially: a stochastic differential equation approach. IEEE Robot. Autom. Lett. 8(4), 2357ā€“2364 (2023)

    ArticleĀ  Google ScholarĀ 

  17. Perrin, N., Schlehuber-Caissier, P.: Fast diffeomorphic matching to learn globally asymptotically stable nonlinear dynamical systems. Syst. Control Lett. 96(6), 51ā€“59 (2016)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  18. Bishop, C.M.: Pattern Recognition and Machine Learning, 5th edn. Information Science and Statistics, Chapter 6, pp. 291ā€“294. Springer, New York (2006)

    Google ScholarĀ 

  19. Homepage. https://bitbucket.org/khansari/lasahandwritingdataset/. Accessed 25 Mar 2015

  20. Lam, S.K., Pitrou, A., Seibert, S.: Numba: a LLVM-based Python JIT compiler. In: International Proceedings on the Second Workshop on the LLVM Compiler Infrastructure in HPC, pp. 1ā€“6, New York, USA (2015)

    Google ScholarĀ 

Download references

Acknowledgements

This work is supported by National Key Research and Development Program (Grant No. 2022YFB4703204), National Natural Science Foundation of China (Grant No. 62311530097), and Chinese Academy of Sciences Project for Young Scientists in Basic Research (Grant No. YSBR-034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Han, L., Wang, Z., Xia, X., Li, H., Cheng, L. (2024). Learning Stable Nonlinear Dynamical System fromĀ One Demonstration. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14450. Springer, Singapore. https://doi.org/10.1007/978-981-99-8070-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8070-3_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8069-7

  • Online ISBN: 978-981-99-8070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics