Abstract
The five-year survival rate of pancreatic cancer is extremely low, and the survival time of patients can be extended by timely detection and treatment. Deep learning-based methods have been used to assist radiologists in diagnosis, with remarkable achievements. However, obtaining sufficient labeled data is time-consuming and labor-intensive. Semi-supervised learning is an effective way to alleviate dependence on annotated data by combining unlabeled data. Since the existing semi-supervised pancreas segmentation works are easier to ignore the domain knowledge, leading to location and shape bias. In this paper, we propose a semi-supervised pancreas segmentation method based on domain knowledge. Specifically, the prior constraints for different organ sub-regions are used to guide the pseudo-label generation for unlabeled data. Then the bidirectional information flow regularization is designed by further utilizing pseudo-labels, encouraging the model to align the labeled and unlabeled data distributions. Extensive experiments on NIH pancreas datasets show: the proposed method achieved Dice of 76.23% and 80.76% under 10% and 20% labeled data, respectively, which is superior to other semi-supervised pancreas segmentation methods.
Supported by National Natural Science Foundation of China (61976106, 62276116); Jiangsu Six Talent Peak Program (DZXX−122); Jiangsu Graduate Research Innovation Program (KYCX23_3677).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bai, W., et al.: Semi-supervised Learning for network-based cardiac MR image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_29
Chang, Q., Yan, Z., Lou, Y., Axel, L., Metaxas, D.N.: Soft-label guided semi-supervised learning for bi-ventricle segmentation in cardiac cine MRI. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1752–1755. IEEE (2020)
Duan, J., et al.: Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach. IEEE Trans. Med. Imaging 38(9), 2151–2164 (2019)
Enewold, L., et al.: Updated overview of the seer-medicare data: enhanced content and applications. JNCI Monographs 2020(55), 3–13 (2020)
Han, K., et al.: An effective semi-supervised approach for liver CT image segmentation. IEEE J. Biomed. Health Inform. 26(8), 3999–4007 (2022)
Hu, L., et al.: Semi-supervised NPC segmentation with uncertainty and attention guided consistency. Knowl.-Based Syst. 239, 108021 (2022)
Jiao, R., Zhang, Y., Ding, L., Cai, R., Zhang, J.: Learning with limited annotations: a survey on deep semi-supervised learning for medical image segmentation. arXiv preprint arXiv:2207.14191 (2022)
Li, K., Zhou, W., Li, H., Anastasio, M.A.: Assessing the impact of deep neural network-based image denoising on binary signal detection tasks. IEEE Trans. Med. Imaging 40(9), 2295–2305 (2021)
Li, X., Yu, L., Chen, H., Fu, C.W., Xing, L., Heng, P.A.: Transformation-consistent self-ensembling model for semisupervised medical image segmentation. IEEE Trans. Neural Netw. Learn. Syst. 32(2), 523–534 (2020)
Liu, T., et al.: Pseudo-3D network for multi-sequence cardiac MR segmentation. In: Pop, M., et al. (eds.) Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges: 10th International Workshop, STACOM 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Revised Selected Papers, pp. 237–245. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39074-7_25
Luo, X., et al.: Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency. Med. Image Anal. 80, 102517 (2022)
Ma, J., et al.: Loss odyssey in medical image segmentation. Med. Image Anal. 71, 102035 (2021)
Masood, S., Sharif, M., Masood, A., Yasmin, M., Raza, M.: A survey on medical image segmentation. Current Med. Imag. 11(1), 3–14 (2015)
Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
Mizrahi, J.D., Surana, R., Valle, J.W., Shroff, R.T.: Pancreatic cancer. The Lancet 395(10242), 2008–2020 (2020)
Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part I, pp. 556–564. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_68
Ta, K., Ahn, S.S., Stendahl, J.C., Sinusas, A.J., Duncan, J.S.: A semi-supervised joint network for simultaneous left ventricular motion tracking and segmentation in 4D echocardiography. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 468–477. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_45
Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems 30 (2017)
Wang, K., et al.: Semi-supervised medical image segmentation via a tripled-uncertainty guided mean teacher model with contrastive learning. Med. Image Anal. 79, 102447 (2022)
Wu, Y., et al.: Mutual consistency learning for semi-supervised medical image segmentation. Med. Image Anal. 81, 102530 (2022)
Wu, Y., Xu, M., Ge, Z., Cai, J., Zhang, L.: Semi-supervised left atrium segmentation with mutual consistency training. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part II, pp. 297–306. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_28
Xia, Y., et al.: Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation. Med. Image Anal. 65, 101766 (2020)
You, C., Zhao, R., Staib, L.H., Duncan, J.S.: Momentum contrastive voxel-wise representation learning for semi-supervised volumetric medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part IV, pp. 639–652. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_61
Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67
Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_47
Zheng, H., et al.: Cartilage segmentation in high-resolution 3D micro-CT images via uncertainty-guided self-training with very sparse annotation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 802–812. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_78
Zhuang, X.: Multivariate mixture model for myocardial segmentation combining multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2933–2946 (2018)
Acknowledgements
This research was supported by the National Natural Science Foundation of China (61976106, 62276116); Jiangsu Six Talent Peak Program (DZXX−122); Jiangsu Graduate Research Innovation Program (KYCX23_3677). Thanks to the open source code from Luo et al.: https://github.com/HiLab-git/SSL4MIS.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ma, S., Liu, Z., Song, Y., Liu, Y., Han, K., Jiang, Y. (2024). A Domain Knowledge-Based Semi-supervised Pancreas Segmentation Approach. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14450. Springer, Singapore. https://doi.org/10.1007/978-981-99-8070-3_6
Download citation
DOI: https://doi.org/10.1007/978-981-99-8070-3_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8069-7
Online ISBN: 978-981-99-8070-3
eBook Packages: Computer ScienceComputer Science (R0)