Skip to main content

A Domain Knowledge-Based Semi-supervised Pancreas Segmentation Approach

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14450))

Included in the following conference series:

Abstract

The five-year survival rate of pancreatic cancer is extremely low, and the survival time of patients can be extended by timely detection and treatment. Deep learning-based methods have been used to assist radiologists in diagnosis, with remarkable achievements. However, obtaining sufficient labeled data is time-consuming and labor-intensive. Semi-supervised learning is an effective way to alleviate dependence on annotated data by combining unlabeled data. Since the existing semi-supervised pancreas segmentation works are easier to ignore the domain knowledge, leading to location and shape bias. In this paper, we propose a semi-supervised pancreas segmentation method based on domain knowledge. Specifically, the prior constraints for different organ sub-regions are used to guide the pseudo-label generation for unlabeled data. Then the bidirectional information flow regularization is designed by further utilizing pseudo-labels, encouraging the model to align the labeled and unlabeled data distributions. Extensive experiments on NIH pancreas datasets show: the proposed method achieved Dice of 76.23% and 80.76% under 10% and 20% labeled data, respectively, which is superior to other semi-supervised pancreas segmentation methods.

Supported by National Natural Science Foundation of China (61976106, 62276116); Jiangsu Six Talent Peak Program (DZXX−122); Jiangsu Graduate Research Innovation Program (KYCX23_3677).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, W., et al.: Semi-supervised Learning for network-based cardiac MR image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_29

  2. Chang, Q., Yan, Z., Lou, Y., Axel, L., Metaxas, D.N.: Soft-label guided semi-supervised learning for bi-ventricle segmentation in cardiac cine MRI. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1752–1755. IEEE (2020)

    Google Scholar 

  3. Duan, J., et al.: Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach. IEEE Trans. Med. Imaging 38(9), 2151–2164 (2019)

    Article  Google Scholar 

  4. Enewold, L., et al.: Updated overview of the seer-medicare data: enhanced content and applications. JNCI Monographs 2020(55), 3–13 (2020)

    Google Scholar 

  5. Han, K., et al.: An effective semi-supervised approach for liver CT image segmentation. IEEE J. Biomed. Health Inform. 26(8), 3999–4007 (2022)

    Article  Google Scholar 

  6. Hu, L., et al.: Semi-supervised NPC segmentation with uncertainty and attention guided consistency. Knowl.-Based Syst. 239, 108021 (2022)

    Article  Google Scholar 

  7. Jiao, R., Zhang, Y., Ding, L., Cai, R., Zhang, J.: Learning with limited annotations: a survey on deep semi-supervised learning for medical image segmentation. arXiv preprint arXiv:2207.14191 (2022)

  8. Li, K., Zhou, W., Li, H., Anastasio, M.A.: Assessing the impact of deep neural network-based image denoising on binary signal detection tasks. IEEE Trans. Med. Imaging 40(9), 2295–2305 (2021)

    Article  Google Scholar 

  9. Li, X., Yu, L., Chen, H., Fu, C.W., Xing, L., Heng, P.A.: Transformation-consistent self-ensembling model for semisupervised medical image segmentation. IEEE Trans. Neural Netw. Learn. Syst. 32(2), 523–534 (2020)

    Article  Google Scholar 

  10. Liu, T., et al.: Pseudo-3D network for multi-sequence cardiac MR segmentation. In: Pop, M., et al. (eds.) Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges: 10th International Workshop, STACOM 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Revised Selected Papers, pp. 237–245. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39074-7_25

  11. Luo, X., et al.: Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency. Med. Image Anal. 80, 102517 (2022)

    Article  Google Scholar 

  12. Ma, J., et al.: Loss odyssey in medical image segmentation. Med. Image Anal. 71, 102035 (2021)

    Article  Google Scholar 

  13. Masood, S., Sharif, M., Masood, A., Yasmin, M., Raza, M.: A survey on medical image segmentation. Current Med. Imag. 11(1), 3–14 (2015)

    Article  Google Scholar 

  14. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  15. Mizrahi, J.D., Surana, R., Valle, J.W., Shroff, R.T.: Pancreatic cancer. The Lancet 395(10242), 2008–2020 (2020)

    Article  Google Scholar 

  16. Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part I, pp. 556–564. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_68

    Chapter  Google Scholar 

  17. Ta, K., Ahn, S.S., Stendahl, J.C., Sinusas, A.J., Duncan, J.S.: A semi-supervised joint network for simultaneous left ventricular motion tracking and segmentation in 4D echocardiography. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 468–477. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_45

    Chapter  Google Scholar 

  18. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  19. Wang, K., et al.: Semi-supervised medical image segmentation via a tripled-uncertainty guided mean teacher model with contrastive learning. Med. Image Anal. 79, 102447 (2022)

    Article  Google Scholar 

  20. Wu, Y., et al.: Mutual consistency learning for semi-supervised medical image segmentation. Med. Image Anal. 81, 102530 (2022)

    Article  Google Scholar 

  21. Wu, Y., Xu, M., Ge, Z., Cai, J., Zhang, L.: Semi-supervised left atrium segmentation with mutual consistency training. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part II, pp. 297–306. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_28

    Chapter  Google Scholar 

  22. Xia, Y., et al.: Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation. Med. Image Anal. 65, 101766 (2020)

    Article  Google Scholar 

  23. You, C., Zhao, R., Staib, L.H., Duncan, J.S.: Momentum contrastive voxel-wise representation learning for semi-supervised volumetric medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part IV, pp. 639–652. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_61

    Chapter  Google Scholar 

  24. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  25. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_47

    Chapter  Google Scholar 

  26. Zheng, H., et al.: Cartilage segmentation in high-resolution 3D micro-CT images via uncertainty-guided self-training with very sparse annotation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 802–812. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_78

    Chapter  Google Scholar 

  27. Zhuang, X.: Multivariate mixture model for myocardial segmentation combining multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2933–2946 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (61976106, 62276116); Jiangsu Six Talent Peak Program (DZXX−122); Jiangsu Graduate Research Innovation Program (KYCX23_3677). Thanks to the open source code from Luo et al.: https://github.com/HiLab-git/SSL4MIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, S., Liu, Z., Song, Y., Liu, Y., Han, K., Jiang, Y. (2024). A Domain Knowledge-Based Semi-supervised Pancreas Segmentation Approach. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14450. Springer, Singapore. https://doi.org/10.1007/978-981-99-8070-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8070-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8069-7

  • Online ISBN: 978-981-99-8070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics