Skip to main content

Spiking Reinforcement Learning for Weakly-Supervised Anomaly Detection

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14451))

Included in the following conference series:

  • 532 Accesses

Abstract

Weakly-supervised Anomaly Detection (AD) has achieved significant performance improvement compared to unsupervised methods by harnessing very little additional labeling information. However, most existing methods ignore anomalies in unlabeled data by simply treating the whole unlabeled set as normal; that is, they fail to resist such noise that may considerably disturb the learning process, and more importantly, they cannot extract key anomaly features from these unlabeled anomalies, which are complementary to those labeled ones. To solve this problem, a spiking reinforcement learning framework for weakly-supervised AD is proposed, named ADSD. Compared with artificial neural networks, the spiking neural network can effectively resist input perturbations due to its unique coding methods and neuronal characteristics. From this point of view, by using spiking neurons with noise filtering and threshold adaptation, as well as a multi-weight evaluation method to discover the most suspicious anomalies in unlabeled data, ADSD achieves end-to-end optimization for the utilization of a few labeled anomaly data and rare unlabeled anomalies in complex environments. The agent in ADSD has robustness and adaptability when exploring potential anomalies in the unknown space. Extensive experiments show that our method ADSD significantly outperforms four popular baselines in various environments while maintaining good robustness and generalization performance.

This work was supported in part by National Key Research and Development Program of China (2022ZD0210500), the National Natural Science Foundation of China under Grants U21A20491/62332019/61972067, and the Distinguished Young Scholars Funding of Dalian (No. 2022RJ01).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C.: An Introduction to Outlier Analysis. In: Outlier Analysis, pp. 1–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47578-3_1

    Chapter  Google Scholar 

  2. Asrori, S.S., Wang, L., Ozawa, S.: Permissioned blockchain-based XGBoost for multi banks fraud detection. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) Neural Information Processing: 29th International Conference, ICONIP 2022, Virtual Event, 22–26 November 2022, Proceedings, Part III. LNCS, vol. 13625, pp. 683–692. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30111-7_57

  3. Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network anomaly detection: methods, systems and tools. IEEE Commun. Surv. Tutorials 16(1), 303–336 (2013)

    Article  Google Scholar 

  4. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)

    Google Scholar 

  5. Burkitt, A.N.: A review of the integrate-and-fire neuron model: I. homogeneous synaptic input. Biol. Cybern. 95, 1–19 (2006)

    Google Scholar 

  6. Ding, J., et al.: Biologically inspired dynamic thresholds for spiking neural networks. Adv. Neural. Inf. Process. Syst. 35, 6090–6103 (2022)

    Google Scholar 

  7. Friedrich, J., Urbanczik, R., Senn, W.: Spatio-temporal credit assignment in neuronal population learning. PLoS Comput. Biol. 7(6), e1002092 (2011)

    Article  MathSciNet  Google Scholar 

  8. Gerstner, W., Kistler, W.M., Naud, R., Paninski, L.: Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  9. Han, S., Hu, X., Huang, H., Jiang, M., Zhao, Y.: ADBench: anomaly detection benchmark. Adv. Neural. Inf. Process. Syst. 35, 32142–32159 (2022)

    Google Scholar 

  10. Hessel, M., et al.: Rainbow: combining improvements in deep reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  11. Hu, L., Liu, Y., Qiu, W.: A deep spiking neural network anomaly detection method. Comput. Intell. Neurosci. CIN 2022, 6391750 (2022)

    Google Scholar 

  12. Kaelbling, L.P., Littman, M.L., Moore, A.W.: An introduction to reinforcement learning. In: The Biology and Technology of Intelligent Autonomous Agents, pp. 90–127 (1995)

    Google Scholar 

  13. Kim, Y., Li, Y., Park, H., Venkatesha, Y., Panda, P.: Neural architecture search for spiking neural networks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XXIV. LNCS, vol. 13684, pp. 36–56. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20053-3_3

  14. Kozma, R., Pino, R.E., Pazienza, G.E.: Advances in Neuromorphic Memristor Science and Applications, vol. 4. Springer, Cham (2012). https://doi.org/10.1007/978-94-007-4491-2

  15. Lavin, A., Ahmad, S.: Evaluating real-time anomaly detection algorithms-the Numenta anomaly benchmark. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 38–44. IEEE (2015)

    Google Scholar 

  16. Li, Z., Zhao, Y., Botta, N., Ionescu, C., Hu, X.: COPOD: copula-based outlier detection. In: 2020 IEEE International Conference on Data Mining (ICDM), pp. 1118–1123. IEEE (2020)

    Google Scholar 

  17. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  18. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  19. Pang, G., Cao, L., Chen, L., Liu, H.: Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2041–2050 (2018)

    Google Scholar 

  20. Pang, G., van den Hengel, A., Shen, C., Cao, L.: Toward deep supervised anomaly detection: reinforcement learning from partially labeled anomaly data. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1298–1308 (2021)

    Google Scholar 

  21. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. (CSUR) 54(2), 1–38 (2021)

    Article  Google Scholar 

  22. Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 353–362 (2019)

    Google Scholar 

  23. Ruff, L., et al.: Deep semi-supervised anomaly detection. arXiv preprint arXiv:1906.02694 (2019)

  24. Savinov, N., et al.: Episodic curiosity through reachability. arXiv preprint arXiv:1810.02274 (2018)

  25. Tamersoy, A., Roundy, K., Chau, D.H.: Guilt by association: large scale malware detection by mining file-relation graphs. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1524–1533 (2014)

    Google Scholar 

  26. Tang, G., Shah, A., Michmizos, K.P.: Spiking neural network on neuromorphic hardware for energy-efficient unidimensional SLAM. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4176–4181. IEEE (2019)

    Google Scholar 

  27. Ukil, A., Bandyoapdhyay, S., Puri, C., Pal, A.: IoT healthcare analytics: the importance of anomaly detection. In: 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), pp. 994–997. IEEE (2016)

    Google Scholar 

  28. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  29. Xu, H., Pang, G., Wang, Y., Wang, Y.: Deep isolation forest for anomaly detection. IEEE Trans. Knowl. Data Eng. 1–14 (2023). https://doi.org/10.1109/TKDE.2023.3270293

  30. Xu, H., Wang, Y., Wei, J., Jian, S., Li, Y., Liu, N.: Fascinating supervisory signals and where to find them: deep anomaly detection with scale learning. In: Proceedings of the International Conference on Machine Learning (2023)

    Google Scholar 

  31. Yoon, J., Sohn, K., Li, C.L., Arik, S.O., Lee, C.Y., Pfister, T.: Self-trained one-class classification for unsupervised anomaly detection. arXiv e-prints pp. arXiv-2106 (2021)

    Google Scholar 

  32. Zhang, D., Zhang, T., Jia, S., Xu, B.: Multi-scale dynamic coding improved spiking actor network for reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 59–67 (2022)

    Google Scholar 

  33. Zhang, H., et al.: In the blink of an eye: event-based emotion recognition. In: ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–11 (2023)

    Google Scholar 

  34. Zhang, J., et al.: Spiking transformers for event-based single object tracking. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, pp. 8801–8810 (2022)

    Google Scholar 

  35. Zhang, J., et al.: Frame-event alignment and fusion network for high frame rate tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9781–9790, June 2023

    Google Scholar 

  36. Zhou, Y., Song, X., Zhang, Y., Liu, F., Zhu, C., Liu, L.: Feature encoding with autoencoders for weakly supervised anomaly detection. IEEE Trans. Neural Networks Learn. Syst. 33(6), 2454–2465 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianchen Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, A., Wu, Z., Zhu, L., Xia, Q., Yang, X. (2024). Spiking Reinforcement Learning for Weakly-Supervised Anomaly Detection. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14451. Springer, Singapore. https://doi.org/10.1007/978-981-99-8073-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8073-4_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8072-7

  • Online ISBN: 978-981-99-8073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics