Skip to main content

A Frequency Reconfigurable Multi-mode Printed Antenna

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14451))

Included in the following conference series:

  • 524 Accesses

Abstract

A multi-frequency reconfigurable antenna is proposed. The designed antenna can be electronically tuned to achieve the tuning operation in the 2.4 GHz band defined by the IEEE 802.11b standard and the ultra-wideband (UWB) low frequency. An L-shaped branch and a polygon patch are used as the main radiators of the antenna. Two varactor diodes are mounted on the slots and one PIN diode is mounted on the L-shaped branch to vary the effective electrical length of the antenna. The simulation and measurement results match well. With high frequency reconfiguration stability under guaranteed miniaturization, good impedance matching (S11 > −10 dB) is obtained in several operating bands, and the overall impedance bandwidth covers 2.34–2.58 GHz and 3.11–5.14 GHz. It provides solutions for operation within WiMax, WLAN, and 5G-sub6 GHz.

Supported in part by the China Postdoctoral Science Foundation 2022M720453, and in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant KJZD-M202201204.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, W., Wang, T., Gao, D., Liu, Y., Zhang, X.: Low-profile broadband magnetoelectric dipole antenna with dual-complementary source. IEEE Antennas Wirel. Propag. Lett. 19(12), 2447–2451 (2020)

    Google Scholar 

  2. Yang, D.D., et al.: Frequency reconfigurable hexagonal microstrip antenna for 5G applications. In: 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), pp. 1–3. IEEE (2021)

    Google Scholar 

  3. Mirzaei, H., Eleftheriades, G.V.: A compact frequency-reconfigurable metamaterial-inspired antenna. IEEE Antennas Wirel. Propag. Lett. 10, 1154–1157 (2011)

    Article  Google Scholar 

  4. Sun, M., Zhang, Z., Zhang, F., Chen, A.: L/S multiband frequency-reconfigurable antenna for satellite applications. IEEE Antennas Wirel. Propag. Lett. 18(12), 2617–2621 (2019)

    Article  Google Scholar 

  5. Gao, C., Lu, Z.L., Liu, M.: Design of frequency and pattern reconfigurable wideband semi-circular slot ring antenna. In: 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pp. 13–134. IEEE (2019)

    Google Scholar 

  6. Nguyen-Trong, N., Piotrowski, A., Fumeaux, C.: A frequency-reconfigurable dual-band low-profile monopolar antenna. IEEE Trans. Antennas Propag. 65(7), 3336–3343 (2017)

    Article  MathSciNet  Google Scholar 

  7. Hu, J., Yang, X., Ge, L., Guo, Z., Hao, Z.C., Wong, H.: A reconfigurable 1 \(\times \) 4 circularly polarized patch array antenna with frequency, radiation pattern, and polarization agility. IEEE Trans. Antennas Propag. 69(8), 5124–5129 (2021)

    Article  Google Scholar 

  8. Singh, A., Goode, I., Saavedra, C.E.: A multistate frequency reconfigurable monopole antenna using fluidic channels. IEEE Antennas Wirel. Propag. Lett. 18(5), 856–860 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiwei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, Y., Wang, H., Chen, M., Shi, Y., Li, H., Li, C. (2024). A Frequency Reconfigurable Multi-mode Printed Antenna. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14451. Springer, Singapore. https://doi.org/10.1007/978-981-99-8073-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8073-4_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8072-7

  • Online ISBN: 978-981-99-8073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics