Skip to main content

Ignored Details in Eyes: Exposing GAN-Generated Faces by Sclera

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14451))

Included in the following conference series:

  • 536 Accesses

Abstract

Advances in Generative adversarial networks (GAN) have significantly improved the quality of synthetic facial images, posing threats to many vital areas. Thus, identifying whether a presented facial image is synthesized is of forensic importance. Our fundamental discovery is the lack of capillaries in the sclera of the GAN-generated faces, which is caused by the lack of physical/physiological constraints in the GAN model. Because there are more or fewer capillaries in people’s eyes, one can distinguish real faces from GAN-generated ones by carefully examining the sclera area. Following this idea, we first extract the sclera area from a probe image, then feed it into a residual attention network to distinguish GAN-generated faces from real ones. The proposed method is validated on the Flickr-Faces-HQ and StyleGAN2/StyleGAN3-generated face datasets. Experiments demonstrate that the capillary in the sclera is a very effective feature for identifying GAN-generated faces. Our code is available at: https://github.com/10961020/Deepfake-detector-based-on-blood-vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://blogs.mathworks.com/steve/2011/10/04/binary-image-convex-hull-algorithm-notes/.

  2. 2.

    http://thispersondoesnotexist.com.

References

  1. Goodfellow, I., et al.: Generative adversarial nets. In: Neural Information Processing Systems (2014)

    Google Scholar 

  2. O’Sullivan, D.: A high school student created a fake 2020 us candidate. Twitter verified it. In: CNN Business (2020). https://cnn.it/3HpHfzz

  3. Sganga, N.: Is that Facebook account real? Meta reports “rapid rise” in AI-generated profile pictures. CBS News (2022)

    Google Scholar 

  4. Wang, X., Guo, H., Hu, S., Chang, M.C., Lyu, S.: GAN-generated faces detection a survey and new perspectives. arXiv:2202.07145 (2022)

  5. Verdoliva, L.: Media forensics and DeepFakes: an overview. arXiv:2001.06564, (2020)

  6. Chen, B., Tan, W., Wang, Y., Zhao, G.: Distinguishing between natural and GAN-generated face images by combining global and local features. Chin. J. Electron. 31, 59–67 (2022)

    Google Scholar 

  7. Barni, M., Kallas, K., Nowroozi, E., Tondi, B.: CNN detection of GAN-generated face images based on cross-band co-occurrences analysis. In: 2020 IEEE International Workshop on Information Forensics and Security, pp. 1–6 (2020)

    Google Scholar 

  8. Wang, R., et al.: FakeSpotter: a simple yet robust baseline for spotting AI-synthesized fake faces. In: Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence (2019)

    Google Scholar 

  9. Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: CNN-generated images are surprisingly easy to spot... for now. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8695–8704 (2020)

    Google Scholar 

  10. Marra, F., Gragnaniello, D., Verdoliva, L., Poggi, G.: Do GANs leave artificial fingerprints? In: IEEE Conference on Multimedia Information Processing and Retrieval, pp. 506–511 (2019)

    Google Scholar 

  11. Yu, N., Davis, L.S., Fritz, M.: Attributing fake images to GANs: learning and analyzing GAN fingerprints. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7556–7566 (2019)

    Google Scholar 

  12. Pu, J., Mangaokar, N., Wang, B., Reddy, C.K., Viswanath, B.: Noisescope: Detecting deepfake images in a blind setting. In: Annual Computer Security Applications Conference, pp. 913–927 (2020)

    Google Scholar 

  13. Frank, J., Eisenhofer, T., Schönherr, L., Fischer, A., Kolossa, D., Holz, T.: Leveraging frequency analysis for deep fake image recognition. In: International Conference on Machine Learning, pp. 3247–3258 (2020)

    Google Scholar 

  14. Yang, X., Li, Y., Qi, H., Lyu, S.: Exposing GAN-synthesized faces using landmark locations. In: Proceedings of the ACM Workshop on Information Hiding and Multimedia Security, pp. 113–118 (2019)

    Google Scholar 

  15. Guo, H., Hu, S., Wang, X., Chang, M.C., Lyu, S.: Robust attentive deep neural network for exposing GAN-generated faces. In: IEEE Access10, 32574–32583 (2022)

    Google Scholar 

  16. Matern, F., Riess, C., Stamminger, M.: Exploiting visual artifacts to expose deepfakes and face manipulations. In: IEEE Winter Applications of Computer Vision Workshops, pp. 83–92 (2019)

    Google Scholar 

  17. Hu, S., Li, Y., Lyu, S.: Exposing GAN-generated faces using inconsistent corneal specular highlights. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2500–2504 (2021)

    Google Scholar 

  18. Guo, H., Hu, S., Wang, X., Chang, M.C., Lyu, S.: Eyes tell all: irregular pupil shapes reveal GAN-generated faces. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2904–2908 (2022)

    Google Scholar 

  19. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  20. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9243–9252 (2019)

    Google Scholar 

  21. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv:1809.11096 (2018)

  22. Goetschalckx, L., Andonian, A., Oliva, A., Isola, P.: Ganalyze: toward visual definitions of cognitive image properties. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5744–5753 (2019)

    Google Scholar 

  23. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: International Conference on Learning Representations (2015)

    Google Scholar 

  24. Karras, T., Aila, Y., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2017)

    Google Scholar 

  25. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  26. Karras, T., et al.: Alias-free generative adversarial networks. In: Advances in Neural Information Processing Systems, pp. 852–863 (2021)

    Google Scholar 

  27. Guo, M.H., et al.: Attention mechanisms in computer vision: a survey. Comput. Vis. Media 8, 331–368 (2022)

    Article  Google Scholar 

  28. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  29. Jaderberg, M., Simonyan, K., Zisserman, A.: Spatial transformer networks. In: Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  30. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

    Google Scholar 

  31. Pe Otsu, N.: A threshold selection method from gray-level histograms. In: IEEE Transactions on Systems, Man, and Cybernetics, pp. 62–66 (1979)

    Google Scholar 

  32. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  33. Corvi, R., Cozzolino, D., Zingarini, G., Poggi, G., Nagano, K., Verdoliva, L.: On the detection of synthetic images generated by diffusion models. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1–5 (2023)

    Google Scholar 

Download references

Acknowledgements

The work is supported by the network emergency management research special topic (no. WLYJGL2023ZD003), the Opening Project of Guangdong Province Key Laboratory of Information Security Technology (Grant No. 2020B1212060078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, T., Peng, A., Zeng, H. (2024). Ignored Details in Eyes: Exposing GAN-Generated Faces by Sclera. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14451. Springer, Singapore. https://doi.org/10.1007/978-981-99-8073-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8073-4_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8072-7

  • Online ISBN: 978-981-99-8073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics