Skip to main content

Optimal Task Grouping Approach in Multitask Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14452))

Included in the following conference series:

  • 438 Accesses

Abstract

Multi-task learning has become a powerful solution in which multiple tasks are trained together to leverage the knowledge learned from one task to improve the performance of the other tasks. However, the tasks are not always constructive on each other in the multi-task formulation and might play negatively during the training process leading to poor results. Thus, this study focuses on finding the optimal group of tasks that should be trained together for multi-task learning in an automotive context. We proposed a multi-task learning approach to model multiple vehicle long-term behaviors using low-resolution data and utilized gradient descent to efficiently discover the optimal group of tasks/vehicle behaviors that can increase the performance of the predictive models in a single training process. In this study, we also quantified the contribution of individual tasks in their groups and to the other groups’ performance. The experimental evaluation of the data collected from thousands of heavy-duty trucks shows that the proposed approach is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alizadeh, M., Rahimi, S., Ma, J.: A hybrid Arima-WNN approach to model vehicle operating behavior and detect unhealthy states. Expert Syst. Appl. 116515 (2022)

    Google Scholar 

  2. Badue, C., et al.: Self-driving cars: a survey. Expert Syst. Appl. 165, 113816 (2021)

    Article  Google Scholar 

  3. Bousonville, T., Dirichs, M., Krüger, T.: Estimating truck fuel consumption with machine learning using telematics, topology and weather data. In: 2019 International Conference on Industrial Engineering and Systems Management (IESM), pp. 1–6. IEEE (2019)

    Google Scholar 

  4. Chen, J., Wang, S., He, E., Wang, H., Wang, L.: Two-dimensional phase lag index image representation of electroencephalography for automated recognition of driver fatigue using convolutional neural network. Expert Syst. Appl. 191, 116339 (2022)

    Article  Google Scholar 

  5. Choi, E., Kim, E.: Critical aggressive acceleration values and models for fuel consumption when starting and driving a passenger car running on lpg. Int. J. Sustain. Transp. 11(6), 395–405 (2017)

    Article  Google Scholar 

  6. Chowdhuri, S., Pankaj, T., Zipser, K.: Multinet: Multi-modal multi-task learning for autonomous driving. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1496–1504. IEEE (2019)

    Google Scholar 

  7. Chowdhuri, S., Pankaj, T., Zipser, K.: Multinet: multi-modal multi-task learning for autonomous driving. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1496–1504 (2019). https://doi.org/10.1109/WACV.2019.00164

  8. Fifty, C., Amid, E., Zhao, Z., Yu, T., Anil, R., Finn, C.: Efficiently identifying task groupings for multi-task learning. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  9. Khoshkangini, R., Kalia, N.R., Ashwathanarayana, S., Orand, A., Maktobian, J., Tajgardan, M.: Vehicle usage extraction using unsupervised ensemble approach. In: Arai, K. (ed.) IntelliSys 2022, vol. 542, pp. 588–604. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-16072-1_43

    Chapter  Google Scholar 

  10. Khoshkangini, R., Mashhadi, P., Tegnered, D., Lundström, J., Rögnvaldsson, T.: Predicting vehicle behavior using multi-task ensemble learning. Expert Syst. Appl. 212, 118716 (2023). https://doi.org/10.1016/j.eswa.2022.118716, https://www.sciencedirect.com/science/article/pii/S0957417422017419

  11. Lattanzi, E., Freschi, V.: Machine learning techniques to identify unsafe driving behavior by means of in-vehicle sensor data. Expert Syst. Appl. 176, 114818 (2021)

    Article  Google Scholar 

  12. Li, Z., Gong, J., Lu, C., Yi, Y.: Interactive behavior prediction for heterogeneous traffic participants in the urban road: a graph-neural-network-based multitask learning framework. IEEE/ASME Trans. Mechatron. 26(3), 1339–1349 (2021)

    Article  Google Scholar 

  13. Lin, N., Zong, C., Tomizuka, M., Song, P., Zhang, Z., Li, G.: An overview on study of identification of driver behavior characteristics for automotive control. Math. Probl. Eng. 2014 (2014)

    Google Scholar 

  14. Liu, P., Kurt, A., Özgüner, Ü.: Trajectory prediction of a lane changing vehicle based on driver behavior estimation and classification. In: 17th international IEEE conference on intelligent transportation systems (ITSC), pp. 942–947. IEEE (2014)

    Google Scholar 

  15. Marina Martinez, C., Heucke, M., Wang, F.Y., Gao, B., Cao, D.: Driving style recognition for intelligent vehicle control and advanced driver assistance: a survey. IEEE Trans. Intell. Transp. Syst. 19(3), 666–676 (2018). https://doi.org/10.1109/TITS.2017.2706978

    Article  Google Scholar 

  16. Miyajima, C., Takeda, K.: Driver-behavior modeling using on-road driving data: a new application for behavior signal processing. IEEE Signal Process. Mag. 33(6), 14–21 (2016). https://doi.org/10.1109/MSP.2016.2602377

    Article  Google Scholar 

  17. Mondal, S., Gupta, A.: Evaluation of driver acceleration/deceleration behavior at signalized intersections using vehicle trajectory data. Transp. Lett. 15, 350–362 (2022)

    Article  Google Scholar 

  18. Pentland, A., Liu, A.: Modeling and prediction of human behavior. Neural Comput. 11(1), 229–242 (1999)

    Article  Google Scholar 

  19. Powell, S., Cezar, G.V., Rajagopal, R.: Scalable probabilistic estimates of electric vehicle charging given observed driver behavior. Appl. Energy 309, 118382 (2022)

    Article  Google Scholar 

  20. Prakash, S., Bodisco, T.A.: An investigation into the effect of road gradient and driving style on NOX emissions from a diesel vehicle driven on urban roads. Transp. Res. Part D: Transp. Environ. 72, 220–231 (2019)

    Article  Google Scholar 

  21. Shahverdy, M., Fathy, M., Berangi, R., Sabokrou, M.: Driver behavior detection and classification using deep convolutional neural networks. Expert Syst. Appl. 149, 113240 (2020)

    Article  Google Scholar 

  22. Wang, Z., et al.: Driver behavior modeling using game engine and real vehicle: a learning-based approach. IEEE Trans. Intell. Veh. 5(4), 738–749 (2020). https://doi.org/10.1109/TIV.2020.2991948

    Article  Google Scholar 

  23. Xie, J., Hu, K., Li, G., Guo, Y.: CNN-based driving maneuver classification using multi-sliding window fusion. Expert Syst. Appl. 169, 114442 (2021). https://doi.org/10.1016/j.eswa.2020.114442, https://www.sciencedirect.com/science/article/pii/S0957417420311003

  24. Xing, Y., Lv, C., Cao, D., Velenis, E.: A unified multi-scale and multi-task learning framework for driver behaviors reasoning. arXiv preprint arXiv:2003.08026 (2020)

  25. Xu, Y., Zheng, Y., Yang, Y.: On the movement simulations of electric vehicles: a behavioral model-based approach. Appl. Energy 283, 116356 (2021). https://doi.org/10.1016/j.apenergy.2020.116356, https://www.sciencedirect.com/science/article/pii/S0306261920317360

  26. Xu, Z., Wei, T., Easa, S., Zhao, X., Qu, X.: Modeling relationship between truck fuel consumption and driving behavior using data from internet of vehicles. Comput.-Aided Civil Infrastruct. Eng. 33(3), 209–219 (2018). https://doi.org/10.1111/mice.12344, https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12344

  27. Xun, Y., Liu, J., Shi, Z.: Multitask learning assisted driver identity authentication and driving behavior evaluation. IEEE Trans. Industr. Inf. 17(10), 7093–7102 (2020)

    Article  Google Scholar 

  28. Yao, W., Zhao, H., Davoine, F., Zha, H.: Learning lane change trajectories from on-road driving data. In: 2012 IEEE Intelligent Vehicles Symposium, pp. 885–890. IEEE (2012)

    Google Scholar 

  29. Zhang, Y., Yang, Q.: A survey on multi-task learning. IEEE Trans. Knowl. Data Eng. 34, 5586–5609 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Khoshkangini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khoshkangini, R., Tajgardan, M., Mashhadi, P., Rögnvaldsson, T., Tegnered, D. (2024). Optimal Task Grouping Approach in Multitask Learning. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14452. Springer, Singapore. https://doi.org/10.1007/978-981-99-8076-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8076-5_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8075-8

  • Online ISBN: 978-981-99-8076-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics