Skip to main content

PnP: Integrated Prediction and Planning for Interactive Lane Change in Dense Traffic

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14452))

Included in the following conference series:

  • 426 Accesses

Abstract

Making human-like decisions for autonomous driving in interactive scenarios is crucial and difficult, requiring the self-driving vehicle to reason about the reactions of interactive vehicles to its behavior. To handle this challenge, we provide an integrated prediction and planning (PnP) decision-making approach. A reactive trajectory prediction model is developed to predict the future states of other actors in order to account for the interactive nature of the behaviors. Then, n-step temporal-difference search is used to make a tactical decision and plan the tracking trajectory for the self-driving vehicle by combining the value estimation network with the reactive prediction model. The proposed PnP method is evaluated using the CARLA simulator, and the results demonstrate that PnP obtains superior performance compared to popular model-free and model-based reinforcement learning baselines.

Z. Xia—Independent Researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/enginBozkurt/MotionPlanner.

References

  1. Chauhan, N.S., Kumar, N.: Traffic flow forecasting using attention enabled Bi-LSTM and GRU hybrid model. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) Neural Information Processing, ICONIP 2022. CCIS, vol. 1794, pp. 505–517. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-1648-1_42

  2. Chen, C., Hu, S., Nikdel, P., Mori, G., Savva, M.: Relational graph learning for crowd navigation. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10007–10013. IEEE (2020)

    Google Scholar 

  3. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Conference on Robot Learning, pp. 1–16. PMLR (2017)

    Google Scholar 

  4. Gu, J., Sun, C., Zhao, H.: DenseTNT: end-to-end trajectory prediction from dense goal sets. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15303–15312 (2021)

    Google Scholar 

  5. Guo, Y., Zhang, Q., Wang, J., Liu, S.: Hierarchical reinforcement learning-based policy switching towards multi-scenarios autonomous driving. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

    Google Scholar 

  6. Hafner, D., Lillicrap, T., Ba, J., Norouzi, M.: Dream to control: Learning behaviors by latent imagination. In: International Conference on Learning Representations (2019)

    Google Scholar 

  7. Hafner, D., Lillicrap, T.P., Norouzi, M., Ba, J.: Mastering Atari with discrete world models. In: International Conference on Learning Representations (2020)

    Google Scholar 

  8. Hagedorn, S., Hallgarten, M., Stoll, M., Condurache, A.: Rethinking integration of prediction and planning in deep learning-based automated driving systems: a review. arXiv preprint arXiv:2308.05731 (2023)

  9. Li, D., Zhao, D., Zhang, Q., Chen, Y.: Reinforcement learning and deep learning based lateral control for autonomous driving [application notes]. IEEE Comput. Intell. Mag. 14(2), 83–98 (2019)

    Article  Google Scholar 

  10. Liu, J., Zeng, W., Urtasun, R., Yumer, E.: Deep structured reactive planning. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 4897–4904. IEEE (2021)

    Google Scholar 

  11. Liu, Y., Gao, Y., Zhang, Q., Ding, D., Zhao, D.: Multi-task safe reinforcement learning for navigating intersections in dense traffic. J. Franklin Inst. (2022)

    Google Scholar 

  12. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  13. Palmal, S., Arya, N., Saha, S., Tripathy, S.: A multi-modal graph convolutional network for predicting human breast cancer prognosis. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) Neural Information Processing, ICONIP 2022. Communications in Computer and Information Science, vol. 1794, pp. 187–198. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-1648-1_16

  14. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  15. Silver, D., Sutton, R.S., Müller, M.: Temporal-difference search in computer go. Mach. Learn. 87, 183–219 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, J., Zhang, Q., Zhao, D.: Highway lane change decision-making via attention-based deep reinforcement learning. IEEE/CAA J. Automatica Sinica 9(3), 567–569 (2021)

    Article  Google Scholar 

  17. Wang, J., Zhang, Q., Zhao, D.: Dynamic-horizon model-based value estimation with latent imagination. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  18. Wang, J., Zhang, Q., Zhao, D., Chen, Y.: Lane change decision-making through deep reinforcement learning with rule-based constraints. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2019)

    Google Scholar 

  19. Wen, J., Zhao, Z., Cui, J., Chen, B.M.: Model-based reinforcement learning with self-attention mechanism for autonomous driving in dense traffic. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) Neural Information Processing, ICONIP 2022. LNCS, vol. 13624, pp. 317–330. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30108-7_27

  20. Wu, J., Huang, Z., Lv, C.: Uncertainty-aware model-based reinforcement learning: methodology and application in autonomous driving. IEEE Trans. Intell. Veh. 8, 194–203 (2022)

    Article  Google Scholar 

  21. Zhao, X., Chen, Y., Guo, J., Zhao, D.: A spatial-temporal attention model for human trajectory prediction. IEEE CAA J. Autom. Sinica 7(4), 965–974 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grants 2022YFA1004000, National Natural Science Foundation of China (NSFC) under Grants No. 62173325 and CCF Baidu Open Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qichao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Zhang, Q., Gao, Y., Xia, Z. (2024). PnP: Integrated Prediction and Planning for Interactive Lane Change in Dense Traffic. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14452. Springer, Singapore. https://doi.org/10.1007/978-981-99-8076-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8076-5_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8075-8

  • Online ISBN: 978-981-99-8076-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics