Skip to main content

Exploring Non-isometric Alignment Inference for Representation Learning of Irregular Sequences

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14452))

Included in the following conference series:

  • 389 Accesses

Abstract

The development of Internet of Things (IoT) technology has led to increasingly diverse and complex data collection methods. This unstable sampling environment has resulted in the generation of a large number of irregular monitoring data streams, posing significant challenges for related data analysis tasks. We have observed that irregular sequence sampling densities are uneven, containing randomly occurring dense and sparse intervals. This data imbalance tendency often leads to overfitting in the dense regions and underfitting in the sparse regions, ultimately impeding the representation performance of models. Conversely, the irregularity at the data level has limited impact on the deep semantics of sequences. Based on this observation, we propose a novel Non-isometric Alignment Inference Architecture (NAIA), which utilizes a multi-level semantic continuous representation structure based on inter-interval segmentation to learn representations of irregular sequences. This architecture efficiently extracts the latent features of irregular sequences. We evaluate the performance of NAIA on multiple datasets for downstream tasks and compare it with recent benchmark methods, demonstrating NAIA’s state-of-the-art performance results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marlin, B.M., Kale, D.C., Khemani, R.G., Wetzel, R.C.: Unsupervised pattern discovery in electronic health care data using probabilistic clustering models. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, pp. 389–398 (2012)

    Google Scholar 

  2. Yadav, P., Steinbach, M., Kumar, V., Simon, G.: Mining electronic health records (EHRs) a survey. ACM Comput. Surv. (CSUR). 50, 1–40 (2018)

    Article  Google Scholar 

  3. Schulz, M., Stattegger, K.: SPECTRUM: spectral analysis of unevenly spaced paleoclimatic time series. Comput. Geosci. 23, 929–945 (1997)

    Article  Google Scholar 

  4. Dogariu, M., Ştefan, L.-D., Boteanu, B.A., Lamba, C., Kim, B., Ionescu, B.: Generation of realistic synthetic financial time-series. ACM Trans. Multimedia Comput. Commun. Appl. 18, 1–27 (2022)

    Article  Google Scholar 

  5. Cheng, P., et al.: Asynchronous fault detection observer for 2-D markov jump systems. IEEE Trans Cybern. 52, 13623–13634 (2021)

    Article  Google Scholar 

  6. Cheng, L.-F., Stück, D., Quisel, T., Foschini, L.: The Impact of Missing Data in User-Generated mHealth Time Series

    Google Scholar 

  7. Song, X., Sun, P., Song, S., Stojanovic, V.: Event-driven NN adaptive fixed-time control for nonlinear systems with guaranteed performance. J. Franklin Inst. 359, 4138–4159 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fang, G., et al.: Up to 100x faster data-free knowledge distillation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 6597–6604 (2022)

    Google Scholar 

  9. Jiang, Y., Yin, S., Kaynak, O.: Performance supervised plant-wide process monitoring in industry 4.0: a roadmap. IEEE Open J. Ind. Electron. Soc. 2, 21–35 (2021)

    Article  Google Scholar 

  10. Horn, M., Moor, M., Bock, C., Rieck, B., Borgwardt, K.: Set functions for time series. In: International Conference on Machine Learning, pp. 4353–4363. PMLR (2020)

    Google Scholar 

  11. Tan, Q., et al.: DATA-GRU: dual-attention time-aware gated recurrent unit for irregular multivariate time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 930–937 (2020)

    Google Scholar 

  12. Narayan Shukla, S., Marlin, B.M.: Multi-time attention networks for irregularly sampled time series. arXiv e-prints. arXiv-2101 (2021)

    Google Scholar 

  13. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press (2005). https://doi.org/10.7551/mitpress/3206.001.0001

    Book  MATH  Google Scholar 

  14. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. John Wiley & Sons (2015)

    Google Scholar 

  15. Kim, H.-G., Jang, G.-J., Choi, H.-J., Kim, M., Kim, Y.-W., Choi, J.: Recurrent neural networks with missing information imputation for medical examination data prediction. In: 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 317–323. IEEE (2017)

    Google Scholar 

  16. Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI conference on artificial intelligence, pp. 11106–11115 (2021)

    Google Scholar 

  17. Bonilla, E. V, Chai, K., Williams, C.: Multi-task Gaussian process prediction. Adv Neural Inf Process Syst. 20 (2007)

    Google Scholar 

  18. Shukla, S.N., Marlin, B.: Interpolation-prediction networks for irregularly sampled time series. In: International Conference on Learning Representations (2018)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30, (2017)

    Google Scholar 

  20. Trindade, A.: ElectricityLoadDiagrams20112014. Data Set, UCI Machine Learning Repository (2015)

    Google Scholar 

  21. Wang, K., et al.: Multiple convolutional neural networks for multivariate time series prediction. Neurocomputing 360, 107–119 (2019)

    Article  Google Scholar 

  22. Zhang, J., Li, X., Tian, J., Luo, H., Yin, S.: An integrated multi-head dual sparse self-attention network for remaining useful life prediction. Reliab. Eng. Syst. Saf. 233, 109096 (2023)

    Article  Google Scholar 

  23. Liu, S., et al.: Pyraformer: low-complexity pyramidal attention for long-range time series modeling and forecasting. In: International Conference on Learning Representations (2021)

    Google Scholar 

  24. Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. Adv. Neural. Inf. Process. Syst. 34, 22419–22430 (2021)

    Google Scholar 

  25. Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., Jin, R.: Fedformer: frequency enhanced decomposed transformer for long-term series forecasting. In: International Conference on Machine Learning, pp. 27268–27286. PMLR (2022)

    Google Scholar 

  26. Fabius, O., van Amersfoort, J.R.: Variational recurrent auto-encoders. arXiv e-prints. arXiv-1412 (2014)

    Google Scholar 

  27. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2828–2837 (2019)

    Google Scholar 

  28. Abdulaal, A., Liu, Z., Lancewicki, T.: Practical approach to asynchronous multivariate time series anomaly detection and localization. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2485–2494 (2021)

    Google Scholar 

  29. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018)

    Google Scholar 

  30. Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Adv. Neural. Inf. Process. Syst. 33, 13016–13026 (2020)

    Google Scholar 

  31. Zhang, Z.: Improved adam optimizer for deep neural networks. In: 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), pp. 1–2. IEEE (2018)

    Google Scholar 

  32. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8, 6085 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shijun Li or Wei Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, F., Li, S., Yu, W. (2024). Exploring Non-isometric Alignment Inference for Representation Learning of Irregular Sequences. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14452. Springer, Singapore. https://doi.org/10.1007/978-981-99-8076-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8076-5_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8075-8

  • Online ISBN: 978-981-99-8076-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics