Skip to main content

Gated Bi-View Graph Structure Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14452))

Included in the following conference series:

  • 456 Accesses

Abstract

Graph structure learning (GSL), which aims to optimize graph structure and learn suitable parameters of graph neural networks (GNNs) simultaneously, has shown great potential in boosting the performance of GNNs. As a branch of GSL, multi-view methods mainly learn an optimal graph structure (final view) from multiple information sources (basic views). However, basic views’ structural information is insufficient, existing methods ignore the fact that different views can complement each other. Moreover, existing methods obtain the final view through simple combination, fail to constrain the noise, which inevitably brings irrelevant information. To tackle these problems, we propose a Gated Bi-View GSL architecture, named GBV-GSL, which interacts two basic views through a selection gating mechanism, so as to “turn off” noise as well as supplement insufficient structures. Specifically, two basic views that focus on different knowledge are extracted from original graph as two inputs of the model. Furthermore, we propose a novel view interaction technique based on selection gating mechanism to remove redundant structural information and supplement insufficient topology while retaining their focused knowledge. Finally, we design a view attention fusion mechanism to adaptively fuse two interacted views to generate the final view. In numerical experiments involving both clean and attacked conditions, GBV-GSL shows significant improvements in the effectiveness and robustness of structure learning and node representation learning. Code is available at https://github.com/Simba9257/GBV-GSL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Y., Wu, L., Zaki, M.: Iterative deep graph learning for graph neural networks: better and robust node embeddings. Adv. Neural Inf. Process. Syst. 33, 19314–19326 (2020)

    Google Scholar 

  2. Chen, Y., Wu, L., Zaki, M.J.: Reinforcement learning based graph-to-sequence model for natural question generation. arXiv preprint arXiv:1908.04942 (2019)

  3. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. arXiv preprint arXiv:1903.02428 (2019)

  4. Franceschi, L., Niepert, M., Pontil, M., He, X.: Learning discrete structures for graph neural networks. In: International Conference on Machine Learning, pp. 1972–1982. PMLR (2019)

    Google Scholar 

  5. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  7. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  8. Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on graphs. In: International Conference on Machine Learning, pp. 4116–4126. PMLR (2020)

    Google Scholar 

  9. Jiang, B., Zhang, Z., Lin, D., Tang, J., Luo, B.: Semi-supervised learning with graph learning-convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11313–11320 (2019)

    Google Scholar 

  10. Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., Tang, J.: Graph structure learning for robust graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 66–74 (2020)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  13. Linmei, H., Yang, T., Shi, C., Ji, H., Li, X.: Heterogeneous graph attention networks for semi-supervised short text classification. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 4821–4830 (2019)

    Google Scholar 

  14. Liu, N., Wang, X., Wu, L., Chen, Y., Guo, X., Shi, C.: Compact graph structure learning via mutual information compression. In: Proceedings of the ACM Web Conference 2022, pp. 1601–1610 (2022)

    Google Scholar 

  15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  16. Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph convolutional networks. arXiv preprint arXiv:2002.05287 (2020)

  17. Qi, X., Liao, R., Jia, J., Fidler, S., Urtasun, R.: 3D graph neural networks for RGBD semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5199–5208 (2017)

    Google Scholar 

  18. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., et al.: Graph attention networks. Stat 1050(20), 10–48550 (2017)

    Google Scholar 

  19. Wang, R., et al.: Graph structure estimation neural networks. In: Proceedings of the Web Conference 2021, pp. 342–353 (2021)

    Google Scholar 

  20. Wu, T., Ren, H., Li, P., Leskovec, J.: Graph information bottleneck. Adv. Neural Inf. Process. Syst. 33, 20437–20448 (2020)

    Google Scholar 

  21. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  22. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.I., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: International Conference on Machine Learning, pp. 5453–5462. PMLR (2018)

    Google Scholar 

  23. You, J., Ying, R., Leskovec, J.: Position-aware graph neural networks. In: International Conference on Machine Learning, pp. 7134–7143. PMLR (2019)

    Google Scholar 

  24. Zheng, C., et al.: Robust graph representation learning via neural sparsification. In: International Conference on Machine Learning, pp. 11458–11468. PMLR (2020)

    Google Scholar 

  25. Zhu, Y., Xu, W., Zhang, J., Liu, Q., Wu, S., Wang, L.: Deep graph structure learning for robust representations: a survey. arXiv preprint arXiv:2103.03036, vol. 14 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Yan, H. (2024). Gated Bi-View Graph Structure Learning. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14452. Springer, Singapore. https://doi.org/10.1007/978-981-99-8076-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8076-5_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8075-8

  • Online ISBN: 978-981-99-8076-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics