Skip to main content

Introducing Semantic-Based Receptive Field into Semantic Segmentation via Graph Neural Networks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

Current semantic segmentation models typically use deep learning models as encoders. However, these models have a fixed receptive field, which can cause mixed information within the receptive field and lead to confounding effects during neural network training. To address these limitations, we propose the “semantic-based receptive field” based on our analysis in current models. This approach seeks to improve the segmentation performance by aggregate image patches with similar representation rather than their physical location, aiming to enhance the interpretability and accuracy of semantic segmentation models. For implementation, we utilize Graph representation learning (GRL) approaches into current semantic segmentation models. Specifically, we divide the input image into patches and construct them into graph-structured data that expresses semantic similarity. Our Graph Convolution Receptor block uses graph-structured data purpose-built from image data and adopt a node-classification-like perspective to address the problem of semantic segmentation. Our GCR module models the relationship between semantic relative patches, allowing us to mitigate the adverse effects of confounding information and improve the quality of feature representation. By adopting this approach, we aim to enhance the accuracy and robustness of the semantic segmentation task. Finally, we evaluated our proposed module on multiple semantic segmentation models and compared its performance to baseline models on multiple semantic segmentation datasets. Our empirical evaluations demonstrate the effectiveness and robustness of our proposed module, as it consistently outperformed baseline models on these datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K.P., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2016)

    Article  Google Scholar 

  2. Coley, C.W., et al.: A graph-convolutional neural network model for the prediction of chemical reactivity. Chem. Sci. 10(2), 370–377 (2019)

    Article  MathSciNet  Google Scholar 

  3. MMS Contributors: MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark (2020). https://github.com/open-mmlab/mmsegmentation

  4. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  5. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2020, Seattle, WA, USA, 14–19 June 2020, pp. 3008–3017. Computer Vision Foundation/IEEE (2020). https://doi.org/10.1109/CVPRW50498.2020.00359. https://openaccess.thecvf.com/content_CVPRW_2020/html/w40/Cubuk_Randaugment_Practical_Automated_Data_Augmentation_With_a_Reduced_Search_Space_CVPRW_2020_paper.html

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)

    Google Scholar 

  7. Ding, H., Jiang, X., Liu, A.Q., Magnenat-Thalmann, N., Wang, G.: Boundary-aware feature propagation for scene segmentation. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, South Korea, 27 October–2 November 2019, pp. 6818–6828. IEEE (2019). https://doi.org/10.1109/ICCV.2019.00692

  8. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenReview.net (2021). https://openreview.net/forum?id=YicbFdNTTy

  9. Du, Y., Yuan, C., Li, B., Zhao, L., Li, Y., Hu, W.: Interaction-aware spatio-temporal pyramid attention networks for action classification. CoRR abs/1808.01106 (2018). http://arxiv.org/abs/1808.01106

  10. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  11. Han, K., Wang, Y., Guo, J., Tang, Y., Wu, E.: Vision GNN: an image is worth graph of nodes. CoRR abs/2206.00272 (2022). https://doi.org/10.48550/arXiv.2206.00272

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90

  13. Hoffer, E., Ben-Nun, T., Hubara, I., Giladi, N., Hoefler, T., Soudry, D.: Augment your batch: improving generalization through instance repetition. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 8126–8135. Computer Vision Foundation/IEEE (2020). https://doi.org/10.1109/CVPR42600.2020.00815. https://openaccess.thecvf.com/content_CVPR_2020/html/Hoffer_Augment_Your_Batch_Improving_Generalization_Through_Instance_Repetition_CVPR_2020_paper.html

  14. Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part IV. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  15. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: deep learning on spatio-temporal graphs. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 5308–5317. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.573

  16. Jin, Y., Li, J., Lian, Z., Jiao, C., Hu, X.: Supporting medical relation extraction via causality-pruned semantic dependency forest. In: Proceedings of the 29th International Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea, 12–17 October 2022, pp. 2450–2460. International Committee on Computational Linguistics (2022)

    Google Scholar 

  17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017, Conference Track Proceedings, Toulon, France, 24–26 April 2017. OpenReview.net (2017). https://openreview.net/forum?id=SJU4ayYgl

  18. Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 4558–4567. Computer Vision Foundation/IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00479. http://openaccess.thecvf.com/content_cvpr_2018/html/Landrieu_Large-Scale_Point_Cloud_CVPR_2018_paper.html

  19. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  20. Li, G., Müller, M., Thabet, A.K., Ghanem, B.: DeepGCNs: can GCNs go as deep as CNNs? In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, South Korea, 27 October–2 November 2019, pp. 9266–9275. IEEE (2019). https://doi.org/10.1109/ICCV.2019.00936

  21. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. CoRR abs/2103.14030 (2021). https://arxiv.org/abs/2103.14030

  22. Liu, Z., Mao, H., Wu, C., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for the 2020s. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022, pp. 11966–11976. IEEE (2022). https://doi.org/10.1109/CVPR52688.2022.01167

  23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. CoRR abs/1411.4038 (2014). http://arxiv.org/abs/1411.4038

  24. Michaelis, C., et al.: Benchmarking robustness in object detection: autonomous driving when winter is coming. arXiv preprint arXiv:1907.07484 (2019)

  25. Prado-Romero, M.A., Prenkaj, B., Stilo, G., Giannotti, F.: A survey on graph counterfactual explanations: definitions, methods, evaluation, and research challenges. ACM Comput. Surv. (2023). https://doi.org/10.1145/3618105

    Article  Google Scholar 

  26. Qasim, S.R., Kieseler, J., Iiyama, Y., Pierini, M.: Learning representations of irregular particle-detector geometry with distance-weighted graph networks. Eur. Phys. J. C 79(7), 1–11 (2019)

    Google Scholar 

  27. Qi, X., Liao, R., Jia, J., Fidler, S., Urtasun, R.: 3D graph neural networks for RGBD semantic segmentation. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017, pp. 5209–5218. IEEE Computer Society (2017). https://doi.org/10.1109/ICCV.2017.556

  28. Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., Dosovitskiy, A.: Do vision transformers see like convolutional neural networks? CoRR abs/2108.08810 (2021). https://arxiv.org/abs/2108.08810

  29. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vis. 126(9), 973–992 (2018). https://doi.org/10.1007/s11263-018-1072-8

    Article  Google Scholar 

  30. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. CoRR abs/2012.12877 (2020). https://arxiv.org/abs/2012.12877

  31. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, July 2021, vol. 139, pp. 10347–10357 (2021)

    Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, December 2017, pp. 4–9, pp. 5998–6008 (2017). https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

  33. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  34. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38(5), 146:1–146:12 (2019). https://doi.org/10.1145/3326362

  35. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. CoRR abs/1807.10221 (2018). http://arxiv.org/abs/1807.10221

  36. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: International Conference on Learning Representations (2018)

    Google Scholar 

  37. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983 (2018)

    Google Scholar 

  38. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, Conference Track Proceedings, San Juan, Puerto Rico, 2–4 May 2016 (2016). http://arxiv.org/abs/1511.07122

  39. Yun, S., Han, D., Chun, S., Oh, S.J., Yoo, Y., Choe, J.: CutMix: regularization strategy to train strong classifiers with localizable features. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, South Korea, 27 October–2 November 2019, pp. 6022–6031. IEEE (2019). https://doi.org/10.1109/ICCV.2019.00612

  40. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: 6th International Conference on Learning Representations, ICLR 2018, Conference Track Proceedings, Vancouver, BC, Canada, 30 April–3 May 2018. OpenReview.net (2018). https://openreview.net/forum?id=r1Ddp1-Rb

  41. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 6230–6239. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.660

  42. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20k dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 5122–5130. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.544

Download references

Acknowledgements

This work was supported by the CAS Project for Young Scientists in Basic Research, Grant No. YSBR-040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, D., Gao, H., Su, X., Wu, F., Zhao, J. (2024). Introducing Semantic-Based Receptive Field into Semantic Segmentation via Graph Neural Networks. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14452. Springer, Singapore. https://doi.org/10.1007/978-981-99-8076-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8076-5_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8075-8

  • Online ISBN: 978-981-99-8076-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics