Abstract
Graph contrastive learning maximizes the mutual information between the embedding representations of the same data instances in different augmented views of a graph, obtaining feature representations for graph data in an unsupervised manner without the need for manual labeling. Most existing node-level graph contrastive learning models only consider embeddings of the same node in different views as positive sample pairs, ignoring rich inherent neighboring relation and resulting in certain contrastive information loss. To address this issue, we propose a heterogeneous graph contrastive learning model that incorporates strongly correlated subgraph features. We design a contrastive learning framework suitable for heterogeneous graphs and introduce high-level neighborhood information during the contrasting process. Specifically, our model selects a strongly correlated subgraph for each target node in the heterogeneous graph based on both topological structure information and node attribute feature information. In the calculation of contrastive loss, we perform feature shifting operations on positive and negative samples based on subgraph encoding to enhance the model’s ability to discriminate between approximate samples. We conduct node classification and ablation experiments on multiple public heterogeneous datasets and the results verify the effectiveness of the research contributions of our model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, pp. 891–900. ACM (2015). https://doi.org/10.1145/2806416.2806512
Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems. Curran Associates, Inc. (2019)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning. PMLR (2020)
Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: The 23rd ACM SIGKDD International Conference (2017)
Fu, T., Lee, W.C., Lei, Z.: HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, Singapore, pp. 1797–1806. ACM (2017). https://doi.org/10.1145/3132847.3132953
Gasteiger, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural networks meet personalized PageRank. In: International Conference on Learning Representations (2019)
Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, vol. 70. JMLR.org (2017)
Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks. IEEE (2005). https://doi.org/10.1109/IJCNN.2005.1555942
Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2016). https://doi.org/10.1145/2939672.2939754
Gulcehre, C., et al.: Hyperbolic attention networks. In: 2018 International Conference on Learning Representations (2018)
Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings (2010)
Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017. Curran Associates Inc. (2017)
Han, H., et al.: OpenHGNN: an open source toolkit for heterogeneous graph neural network. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management. ACM (2022). https://doi.org/10.1145/3511808.3557664
Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on graphs. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020. JMLR.org (2020)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
Hu, B., Fang, Y., Shi, C.: Adversarial learning on heterogeneous information networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM (2019). https://doi.org/10.1145/3292500.3330970
Jin, M., Zheng, Y., Li, Y.F., Gong, C., Zhou, C., Pan, S.: Multi-scale contrastive siamese networks for self-supervised graph representation learning. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization (2021). https://doi.org/10.24963/ijcai.2021/204
Ju, W., et al.: Unsupervised graph-level representation learning with hierarchical contrasts. Neural Netw. (2023). https://doi.org/10.1016/j.neunet.2022.11.019
Khrulkov, V., Mirvakhabova, L., Ustinova, E., Oseledets, I., Lempitsky, V.: Hyperbolic image embeddings. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2020). https://doi.org/10.1109/CVPR42600.2020.00645
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017, Conference Track Proceedings, Toulon, France, 24–26 April 2017. OpenReview.net (2017)
Li, X., Ding, D., Kao, B., Sun, Y., Mamoulis, N.: Leveraging meta-path contexts for classification in heterogeneous information networks. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE (2021). https://doi.org/10.1109/ICDE51399.2021.00084
Liu, J., Yang, M., Zhou, M., Feng, S., Fournier-Viger, P.: Enhancing hyperbolic graph embeddings via contrastive learning. In: 2nd Workshop on Self-Supervised Learning, NeurIPS 2021. arXiv arXiv:2201.08554, 35th Conference on Neural Information Processing Systems, NeurIPS 2021 (2022)
Liu, Q., Nickel, M., Kiela, D.: Hyperbolic graph neural networks. In: Advances in Neural Information Processing Systems. Curran Associates, Inc. (2019)
Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)
Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web (1999). http://ilpubs.stanford.edu:8090/422/
Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2014). https://doi.org/10.1145/2623330.2623732
Ren, Y., Liu, B., Huang, C., Dai, P., Bo, L., Zhang, J.: HDGI: an unsupervised graph neural network for representation learning in heterogeneous graph. In: AAAI Workshop (2020)
Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20, 61–80 (2009). https://doi.org/10.1109/TNN.2008.2005605
Shi, C., Hu, B., Zhao, W.X., Yu, P.S.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. (2019). https://doi.org/10.1109/TKDE.2018.2833443
Tan, Z., Ding, K., Guo, R., Liu, H.: Supervised graph contrastive learning for few-shot node classification. In: Amini, M.R., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds.) Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022. LNCS, vol. 13714, pp. 394–411. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26390-3_24
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee (2015). https://doi.org/10.1145/2736277.2741093
Thakoor, S., et al.: Large-scale representation learning on graphs via bootstrapping. In: International Conference on Learning Representations (2022)
Tu, K., Cui, P., Wang, X., Wang, F., Zhu, W.: Structural deep embedding for hyper-networks. Proc. AAAI Conf. Artif. Intell. 32(1), 426–433 (2018). AAAI’18/IAAI’18/EAAI’18, AAAI Press (2018)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: 2018 International Conference on Learning Representations (2018)
Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. In: International Conference on Learning Representations (2022)
Wang, C., Sun, D., Bai, Y.: PiPAD: pipelined and parallel dynamic GNN training on GPUs. In: Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming. ACM (2023). https://doi.org/10.1145/3572848.3577487
Wang, M., et al.: Deep graph library: a graph-centric, highly-performant package for graph neural networks (2019)
Wang, P., Agarwal, K., Ham, C., Choudhury, S., Reddy, C.K.: Self-supervised learning of contextual embeddings for link prediction in heterogeneous networks. In: 2021 Proceedings of the Web Conference. ACM (2021). https://doi.org/10.1145/3442381.3450060
Wang, X., et al.: Heterogeneous graph attention network. In: The World Wide Web Conference. ACM (2019). https://doi.org/10.1145/3308558.3313562
Wang, X., Zhang, Y., Shi, C.: Hyperbolic heterogeneous information network embedding. Proc. AAAI Conf. Artif. Intell. (2019). https://doi.org/10.1609/aaai.v33i01.33015337
Wang, Y., Wang, W., Liang, Y., Cai, Y., Liu, J., Hooi, B.: NodeAug: semi-supervised node classification with data augmentation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM (2020). https://doi.org/10.1145/3394486.3403063
Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: International Conference on Machine Learning, PMLR 2019, pp. 6861–6871. PMLR (2019)
Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
Yang, C., Zhang, J., Han, J.: Neural embedding propagation on heterogeneous networks. In: 2019 IEEE International Conference on Data Mining (ICDM). IEEE (2019)
Yang, Y., Guan, Z., Li, J., Zhao, W., Cui, J., Wang, Q.: Interpretable and efficient heterogeneous graph convolutional network. IEEE Trans. Knowl. Data Eng. (2021). https://doi.org/10.1109/TKDE.2021.3101356
You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33. Curran Associates, Inc. (2020)
Zeng, J., Xie, P.: Contrastive self-supervised learning for graph classification. Proc. AAAI Conf. Artif. Intell. (2021). https://doi.org/10.1609/aaai.v35i12.17293
Zhang, J., Dong, Y., Wang, Y., Tang, J., Ding, M.: ProNE: fast and scalable network representation learning. In: IJCAI 2019, vol. 19, pp. 4278–4284 (2019)
Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive representation learning. arXiv arXiv:2006.04131 [cs, stat] (2020)
Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021. ACM (2021). https://doi.org/10.1145/3442381.3449802
Zhu, Y., Zhou, D., Xiao, J., Jiang, X., Chen, X., Liu, Q.: HyperText: endowing FastText with hyperbolic geometry. In: Findings of the Association for Computational Linguistics, EMNLP 2020. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.findings-emnlp.104
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Liu, Y., Lang, B. (2024). Enhancing Heterogeneous Graph Contrastive Learning with Strongly Correlated Subgraphs. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14452. Springer, Singapore. https://doi.org/10.1007/978-981-99-8076-5_7
Download citation
DOI: https://doi.org/10.1007/978-981-99-8076-5_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8075-8
Online ISBN: 978-981-99-8076-5
eBook Packages: Computer ScienceComputer Science (R0)