Skip to main content

Mastering Complex Coordination Through Attention-Based Dynamic Graph

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14447))

Included in the following conference series:

  • 1742 Accesses

Abstract

The coordination between agents in multi-agent systems has become a popular topic in many fields. To catch the inner relationship between agents, the graph structure is combined with existing methods and improves the results. But in large-scale tasks with numerous agents, an overly complex graph would lead to a boost in computational cost and a decline in performance. Here we present DAGMIX, a novel graph-based value factorization method. Instead of a complete graph, DAGMIX generates a dynamic graph at each time step during training, on which it realizes a more interpretable and effective combining process through the attention mechanism. Experiments show that DAGMIX significantly outperforms previous SOTA methods in large-scale scenarios, as well as achieving promising results on other tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berner, C., et al.: Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680 (2019)

  2. Ha, D., Dai, A., Le, Q.V.: Hypernetworks. arXiv preprint arXiv:1609.09106 (2016)

  3. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  4. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)

  5. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  6. Kortvelesy, R., Prorok, A.: QGNN: value function factorisation with graph neural networks. arXiv preprint arXiv:2205.13005 (2022)

  7. Li, S., Gupta, J.K., Morales, P., Allen, R., Kochenderfer, M.J.: Deep implicit coordination graphs for multi-agent reinforcement learning. arXiv preprint arXiv:2006.11438 (2020)

  8. Liu, Y., Wang, W., Hu, Y., Hao, J., Chen, X., Gao, Y.: Multi-agent game abstraction via graph attention neural network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 7211–7218 (2020)

    Google Scholar 

  9. Lowe, R., Wu, Y.I., Tamar, A., Harb, J., Pieter Abbeel, O., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  10. Mahajan, A., Rashid, T., Samvelyan, M., Whiteson, S.: MAVEN: multi-agent variational exploration. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  11. Malysheva, A., Kudenko, D., Shpilman, A.: MAGNet: multi-agent graph network for deep multi-agent reinforcement learning. In: 2019 XVI International Symposium “Problems of Redundancy in Information and Control Systems” (REDUNDANCY), pp. 171–176. IEEE (2019)

    Google Scholar 

  12. Oliehoek, F.A., Amato, C.: A Concise Introduction to Decentralized POMDPs. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28929-8

    Book  MATH  Google Scholar 

  13. Rashid, T., Farquhar, G., Peng, B., Whiteson, S.: Weighted QMIX: expanding monotonic value function factorisation for deep multi-agent reinforcement learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 10199–10210 (2020)

    Google Scholar 

  14. Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., Whiteson, S.: QMIX: monotonic value function factorisation for deep multi-agent reinforcement learning. In: International Conference on Machine Learning, pp. 4295–4304. PMLR (2018)

    Google Scholar 

  15. Samvelyan, M., et al.: The StarCraft multi-agent challenge. arXiv preprint arXiv:1902.04043 (2019)

  16. Shamsoshoara, A., Khaledi, M., Afghah, F., Razi, A., Ashdown, J.: Distributed cooperative spectrum sharing in UAV networks using multi-agent reinforcement learning. In: 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 1–6. IEEE (2019)

    Google Scholar 

  17. Son, K., Kim, D., Kang, W.J., Hostallero, D., Yi, Y.: QTRAN: learning to factorize with transformation for cooperative multi-agent reinforcement learning. CoRR abs/1905.05408 (2019). https://arxiv.org/abs/1905.05408

  18. Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296 (2017)

  19. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  20. Tampuu, A., et al.: Multiagent cooperation and competition with deep reinforcement learning. PLoS ONE 12(4), e0172395 (2017)

    Article  Google Scholar 

  21. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  22. Vinyals, O., et al.: Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575(7782), 350–354 (2019)

    Article  Google Scholar 

  23. Wang, J., Ren, Z., Liu, T., Yu, Y., Zhang, C.: QPLEX: duplex dueling multi-agent Q-learning. arXiv preprint arXiv:2008.01062 (2020)

  24. Wang, T., Dong, H., Lesser, V., Zhang, C.: ROMA: multi-agent reinforcement learning with emergent roles. arXiv preprint arXiv:2003.08039 (2020)

  25. Wang, T., Gupta, T., Mahajan, A., Peng, B., Whiteson, S., Zhang, C.: RODE: learning roles to decompose multi-agent tasks. arXiv preprint arXiv:2010.01523 (2020)

  26. Xu, D., Chen, G.: Autonomous and cooperative control of UAV cluster with multi-agent reinforcement learning. Aeronaut. J. 126(1300), 932–951 (2022)

    Article  Google Scholar 

  27. Xu, Z., Zhang, B., Bai, Y., Li, D., Fan, G.: Learning to coordinate via multiple graph neural networks. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. LNCS, vol. 13110, pp. 52–63. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92238-2_5

    Chapter  Google Scholar 

  28. Yang, Y., et al.: Qatten: a general framework for cooperative multiagent reinforcement learning. arXiv preprint arXiv:2002.03939 (2020)

  29. Ye, D., et al.: Towards playing full MOBA games with deep reinforcement learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 621–632 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Science, Grant No. XDA27050100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, G., Xu, Z., Zhang, Z., Fan, G. (2024). Mastering Complex Coordination Through Attention-Based Dynamic Graph. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14447. Springer, Singapore. https://doi.org/10.1007/978-981-99-8079-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8079-6_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8078-9

  • Online ISBN: 978-981-99-8079-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics